Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcbr12g Structured version   Visualization version   GIF version

Theorem sbcbr12g 4638
 Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
Assertion
Ref Expression
sbcbr12g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝑅𝐴 / 𝑥𝐶))
Distinct variable group:   𝑥,𝑅
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem sbcbr12g
StepHypRef Expression
1 sbcbr123 4636 . 2 ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶)
2 csbconstg 3512 . . 3 (𝐴𝑉𝐴 / 𝑥𝑅 = 𝑅)
32breqd 4594 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵𝑅𝐴 / 𝑥𝐶))
41, 3syl5bb 271 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝑅𝐴 / 𝑥𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∈ wcel 1977  [wsbc 3402  ⦋csb 3499   class class class wbr 4583 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584 This theorem is referenced by:  sbcbr1g  4639  sbcbr2g  4640  cdlemk39s  35245
 Copyright terms: Public domain W3C validator