Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  s6eqd Structured version   Visualization version   GIF version

Theorem s6eqd 13463
 Description: Equality theorem for a length 6 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
s3eqd.3 (𝜑𝐶 = 𝑃)
s4eqd.4 (𝜑𝐷 = 𝑄)
s5eqd.5 (𝜑𝐸 = 𝑅)
s6eqd.6 (𝜑𝐹 = 𝑆)
Assertion
Ref Expression
s6eqd (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆”⟩)

Proof of Theorem s6eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
2 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
3 s3eqd.3 . . . 4 (𝜑𝐶 = 𝑃)
4 s4eqd.4 . . . 4 (𝜑𝐷 = 𝑄)
5 s5eqd.5 . . . 4 (𝜑𝐸 = 𝑅)
61, 2, 3, 4, 5s5eqd 13462 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅”⟩)
7 s6eqd.6 . . . 4 (𝜑𝐹 = 𝑆)
87s1eqd 13234 . . 3 (𝜑 → ⟨“𝐹”⟩ = ⟨“𝑆”⟩)
96, 8oveq12d 6567 . 2 (𝜑 → (⟨“𝐴𝐵𝐶𝐷𝐸”⟩ ++ ⟨“𝐹”⟩) = (⟨“𝑁𝑂𝑃𝑄𝑅”⟩ ++ ⟨“𝑆”⟩))
10 df-s6 13448 . 2 ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸”⟩ ++ ⟨“𝐹”⟩)
11 df-s6 13448 . 2 ⟨“𝑁𝑂𝑃𝑄𝑅𝑆”⟩ = (⟨“𝑁𝑂𝑃𝑄𝑅”⟩ ++ ⟨“𝑆”⟩)
129, 10, 113eqtr4g 2669 1 (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆”⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475  (class class class)co 6549   ++ cconcat 13148  ⟨“cs1 13149  ⟨“cs5 13440  ⟨“cs6 13441 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-s1 13157  df-s2 13444  df-s3 13445  df-s4 13446  df-s5 13447  df-s6 13448 This theorem is referenced by:  s7eqd  13464
 Copyright terms: Public domain W3C validator