MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrargra Structured version   Visualization version   GIF version

Theorem rusgrargra 26457
Description: A k-regular undirected simple graph is a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.)
Assertion
Ref Expression
rusgrargra (⟨𝑉, 𝐸⟩ RegUSGrph 𝐾 → ⟨𝑉, 𝐸⟩ RegGrph 𝐾)

Proof of Theorem rusgrargra
Dummy variables 𝑒 𝑘 𝑝 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rusgra 26452 . . . 4 RegUSGrph = {⟨⟨𝑣, 𝑒⟩, 𝑘⟩ ∣ (𝑣 USGrph 𝑒 ∧ ⟨𝑣, 𝑒⟩ RegGrph 𝑘)}
21breqi 4589 . . 3 (⟨𝑉, 𝐸⟩ RegUSGrph 𝐾 ↔ ⟨𝑉, 𝐸⟩{⟨⟨𝑣, 𝑒⟩, 𝑘⟩ ∣ (𝑣 USGrph 𝑒 ∧ ⟨𝑣, 𝑒⟩ RegGrph 𝑘)}𝐾)
3 oprabv 6601 . . 3 (⟨𝑉, 𝐸⟩{⟨⟨𝑣, 𝑒⟩, 𝑘⟩ ∣ (𝑣 USGrph 𝑒 ∧ ⟨𝑣, 𝑒⟩ RegGrph 𝑘)}𝐾 → (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝐾 ∈ V))
42, 3sylbi 206 . 2 (⟨𝑉, 𝐸⟩ RegUSGrph 𝐾 → (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝐾 ∈ V))
5 isrusgra 26454 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝐾 ∈ V) → (⟨𝑉, 𝐸⟩ RegUSGrph 𝐾 ↔ (𝑉 USGrph 𝐸𝐾 ∈ ℕ0 ∧ ∀𝑝𝑉 ((𝑉 VDeg 𝐸)‘𝑝) = 𝐾)))
6 isrgra 26453 . . . . . 6 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝐾 ∈ V) → (⟨𝑉, 𝐸⟩ RegGrph 𝐾 ↔ (𝐾 ∈ ℕ0 ∧ ∀𝑝𝑉 ((𝑉 VDeg 𝐸)‘𝑝) = 𝐾)))
76biimprcd 239 . . . . 5 ((𝐾 ∈ ℕ0 ∧ ∀𝑝𝑉 ((𝑉 VDeg 𝐸)‘𝑝) = 𝐾) → ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝐾 ∈ V) → ⟨𝑉, 𝐸⟩ RegGrph 𝐾))
873adant1 1072 . . . 4 ((𝑉 USGrph 𝐸𝐾 ∈ ℕ0 ∧ ∀𝑝𝑉 ((𝑉 VDeg 𝐸)‘𝑝) = 𝐾) → ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝐾 ∈ V) → ⟨𝑉, 𝐸⟩ RegGrph 𝐾))
98com12 32 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝐾 ∈ V) → ((𝑉 USGrph 𝐸𝐾 ∈ ℕ0 ∧ ∀𝑝𝑉 ((𝑉 VDeg 𝐸)‘𝑝) = 𝐾) → ⟨𝑉, 𝐸⟩ RegGrph 𝐾))
105, 9sylbid 229 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝐾 ∈ V) → (⟨𝑉, 𝐸⟩ RegUSGrph 𝐾 → ⟨𝑉, 𝐸⟩ RegGrph 𝐾))
114, 10mpcom 37 1 (⟨𝑉, 𝐸⟩ RegUSGrph 𝐾 → ⟨𝑉, 𝐸⟩ RegGrph 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cop 4131   class class class wbr 4583  cfv 5804  (class class class)co 6549  {coprab 6550  0cn0 11169   USGrph cusg 25859   VDeg cvdg 26420   RegGrph crgra 26449   RegUSGrph crusgra 26450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-iota 5768  df-fv 5812  df-ov 6552  df-oprab 6553  df-rgra 26451  df-rusgra 26452
This theorem is referenced by:  rusgra0edg  26482
  Copyright terms: Public domain W3C validator