MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgra0edg Structured version   Visualization version   GIF version

Theorem rusgra0edg 26482
Description: Special case for graphs without edges: There are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.)
Hypotheses
Ref Expression
rusgranumwlk.w 𝑊 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑐)) = 𝑛})
rusgranumwlk.l 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (#‘{𝑤 ∈ (𝑊𝑛) ∣ ((2nd𝑤)‘0) = 𝑣}))
Assertion
Ref Expression
rusgra0edg ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = 0)
Distinct variable groups:   𝐸,𝑐,𝑛   𝑁,𝑐,𝑛   𝑉,𝑐,𝑛   𝑣,𝑁,𝑤   𝑃,𝑛,𝑣,𝑤   𝑣,𝑉   𝑛,𝑊,𝑣,𝑤   𝑤,𝑉,𝑐   𝑣,𝐸,𝑤
Allowed substitution hints:   𝑃(𝑐)   𝐿(𝑤,𝑣,𝑛,𝑐)   𝑊(𝑐)

Proof of Theorem rusgra0edg
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 rusisusgra 26458 . . 3 (⟨𝑉, 𝐸⟩ RegUSGrph 0 → 𝑉 USGrph 𝐸)
2 id 22 . . 3 (𝑃𝑉𝑃𝑉)
3 nnnn0 11176 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4 rusgranumwlk.w . . . 4 𝑊 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑐)) = 𝑛})
5 rusgranumwlk.l . . . 4 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (#‘{𝑤 ∈ (𝑊𝑛) ∣ ((2nd𝑤)‘0) = 𝑣}))
64, 5rusgranumwlklem4 26479 . . 3 ((𝑉 USGrph 𝐸𝑃𝑉𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (#‘{𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃}))
71, 2, 3, 6syl3an 1360 . 2 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = (#‘{𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃}))
8 df-rab 2905 . . . . 5 {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∣ (𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ (𝑤‘0) = 𝑃)}
9 usgrav 25867 . . . . . . . . . . . . . 14 (𝑉 USGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
101, 9syl 17 . . . . . . . . . . . . 13 (⟨𝑉, 𝐸⟩ RegUSGrph 0 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
1110, 3anim12i 588 . . . . . . . . . . . 12 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑁 ∈ ℕ) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0))
12113adant2 1073 . . . . . . . . . . 11 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0))
13 df-3an 1033 . . . . . . . . . . 11 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) ↔ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0))
1412, 13sylibr 223 . . . . . . . . . 10 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0))
15 iswwlkn 26212 . . . . . . . . . . 11 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ↔ (𝑤 ∈ (𝑉 WWalks 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))))
16 iswwlk 26211 . . . . . . . . . . . . 13 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑤 ∈ (𝑉 WWalks 𝐸) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸)))
17163adant3 1074 . . . . . . . . . . . 12 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ (𝑉 WWalks 𝐸) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸)))
1817anbi1d 737 . . . . . . . . . . 11 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝑤 ∈ (𝑉 WWalks 𝐸) ∧ (#‘𝑤) = (𝑁 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))))
1915, 18bitrd 267 . . . . . . . . . 10 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))))
2014, 19syl 17 . . . . . . . . 9 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))))
2120anbi1d 737 . . . . . . . 8 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → ((𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ (𝑤‘0) = 𝑃) ↔ (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1)) ∧ (𝑤‘0) = 𝑃)))
22 oveq1 6556 . . . . . . . . . . . . . . . . 17 ((#‘𝑤) = (𝑁 + 1) → ((#‘𝑤) − 1) = ((𝑁 + 1) − 1))
23 nncn 10905 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
24 1cnd 9935 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2523, 24pncand 10272 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
26253ad2ant3 1077 . . . . . . . . . . . . . . . . 17 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → ((𝑁 + 1) − 1) = 𝑁)
2722, 26sylan9eqr 2666 . . . . . . . . . . . . . . . 16 (((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) ∧ (#‘𝑤) = (𝑁 + 1)) → ((#‘𝑤) − 1) = 𝑁)
2827oveq2d 6565 . . . . . . . . . . . . . . 15 (((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) ∧ (#‘𝑤) = (𝑁 + 1)) → (0..^((#‘𝑤) − 1)) = (0..^𝑁))
2928raleqdv 3121 . . . . . . . . . . . . . 14 (((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) ∧ (#‘𝑤) = (𝑁 + 1)) → (∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸))
30 rusgrargra 26457 . . . . . . . . . . . . . . . . 17 (⟨𝑉, 𝐸⟩ RegUSGrph 0 → ⟨𝑉, 𝐸⟩ RegGrph 0)
31 0eusgraiff0rgra 26466 . . . . . . . . . . . . . . . . . 18 (𝑉 USGrph 𝐸 → (⟨𝑉, 𝐸⟩ RegGrph 0 ↔ 𝐸 = ∅))
32 rneq 5272 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐸 = ∅ → ran 𝐸 = ran ∅)
33 rn0 5298 . . . . . . . . . . . . . . . . . . . . . . . . 25 ran ∅ = ∅
3432, 33syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐸 = ∅ → ran 𝐸 = ∅)
3534eleq2d 2673 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐸 = ∅ → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ∅))
36 noel 3878 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ∅
3736bifal 1488 . . . . . . . . . . . . . . . . . . . . . . 23 ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ∅ ↔ ⊥)
3835, 37syl6bb 275 . . . . . . . . . . . . . . . . . . . . . 22 (𝐸 = ∅ → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ⊥))
3938adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸 = ∅ ∧ (𝑃𝑉𝑁 ∈ ℕ)) → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ⊥))
4039ralbidv 2969 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 = ∅ ∧ (𝑃𝑉𝑁 ∈ ℕ)) → (∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^𝑁)⊥))
41 fal 1482 . . . . . . . . . . . . . . . . . . . . . 22 ¬ ⊥
4241ralf0 4030 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑖 ∈ (0..^𝑁)⊥ ↔ (0..^𝑁) = ∅)
4342a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 = ∅ ∧ (𝑃𝑉𝑁 ∈ ℕ)) → (∀𝑖 ∈ (0..^𝑁)⊥ ↔ (0..^𝑁) = ∅))
44 0nn0 11184 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℕ0
4544a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 0 ∈ ℕ0)
46 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
47 nngt0 10926 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 0 < 𝑁)
4845, 46, 473jca 1235 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (0 ∈ ℕ0𝑁 ∈ ℕ ∧ 0 < 𝑁))
4948ad2antll 761 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐸 = ∅ ∧ (𝑃𝑉𝑁 ∈ ℕ)) → (0 ∈ ℕ0𝑁 ∈ ℕ ∧ 0 < 𝑁))
50 elfzo0 12376 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 ∈ (0..^𝑁) ↔ (0 ∈ ℕ0𝑁 ∈ ℕ ∧ 0 < 𝑁))
5149, 50sylibr 223 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐸 = ∅ ∧ (𝑃𝑉𝑁 ∈ ℕ)) → 0 ∈ (0..^𝑁))
52 fzon0 12356 . . . . . . . . . . . . . . . . . . . . . . 23 ((0..^𝑁) ≠ ∅ ↔ 0 ∈ (0..^𝑁))
5351, 52sylibr 223 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐸 = ∅ ∧ (𝑃𝑉𝑁 ∈ ℕ)) → (0..^𝑁) ≠ ∅)
5453neneqd 2787 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸 = ∅ ∧ (𝑃𝑉𝑁 ∈ ℕ)) → ¬ (0..^𝑁) = ∅)
55 nbfal 1486 . . . . . . . . . . . . . . . . . . . . 21 (¬ (0..^𝑁) = ∅ ↔ ((0..^𝑁) = ∅ ↔ ⊥))
5654, 55sylib 207 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 = ∅ ∧ (𝑃𝑉𝑁 ∈ ℕ)) → ((0..^𝑁) = ∅ ↔ ⊥))
5740, 43, 563bitrd 293 . . . . . . . . . . . . . . . . . . 19 ((𝐸 = ∅ ∧ (𝑃𝑉𝑁 ∈ ℕ)) → (∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ⊥))
5857ex 449 . . . . . . . . . . . . . . . . . 18 (𝐸 = ∅ → ((𝑃𝑉𝑁 ∈ ℕ) → (∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ⊥)))
5931, 58syl6bi 242 . . . . . . . . . . . . . . . . 17 (𝑉 USGrph 𝐸 → (⟨𝑉, 𝐸⟩ RegGrph 0 → ((𝑃𝑉𝑁 ∈ ℕ) → (∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ⊥))))
601, 30, 59sylc 63 . . . . . . . . . . . . . . . 16 (⟨𝑉, 𝐸⟩ RegUSGrph 0 → ((𝑃𝑉𝑁 ∈ ℕ) → (∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ⊥)))
61603impib 1254 . . . . . . . . . . . . . . 15 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ⊥))
6261adantr 480 . . . . . . . . . . . . . 14 (((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) ∧ (#‘𝑤) = (𝑁 + 1)) → (∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ⊥))
6329, 62bitrd 267 . . . . . . . . . . . . 13 (((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) ∧ (#‘𝑤) = (𝑁 + 1)) → (∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ⊥))
64633anbi3d 1397 . . . . . . . . . . . 12 (((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) ∧ (#‘𝑤) = (𝑁 + 1)) → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ⊥)))
65 df-3an 1033 . . . . . . . . . . . . 13 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ⊥) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉) ∧ ⊥))
66 ancom 465 . . . . . . . . . . . . 13 (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉) ∧ ⊥) ↔ (⊥ ∧ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉)))
6765, 66bitri 263 . . . . . . . . . . . 12 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ⊥) ↔ (⊥ ∧ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉)))
6864, 67syl6bb 275 . . . . . . . . . . 11 (((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) ∧ (#‘𝑤) = (𝑁 + 1)) → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ↔ (⊥ ∧ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉))))
6968ex 449 . . . . . . . . . 10 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → ((#‘𝑤) = (𝑁 + 1) → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ↔ (⊥ ∧ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉)))))
7069pm5.32rd 670 . . . . . . . . 9 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1)) ↔ ((⊥ ∧ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉)) ∧ (#‘𝑤) = (𝑁 + 1))))
7170anbi1d 737 . . . . . . . 8 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → ((((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1)) ∧ (𝑤‘0) = 𝑃) ↔ (((⊥ ∧ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉)) ∧ (#‘𝑤) = (𝑁 + 1)) ∧ (𝑤‘0) = 𝑃)))
72 anass 679 . . . . . . . . . 10 ((((⊥ ∧ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉)) ∧ (#‘𝑤) = (𝑁 + 1)) ∧ (𝑤‘0) = 𝑃) ↔ ((⊥ ∧ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉)) ∧ ((#‘𝑤) = (𝑁 + 1) ∧ (𝑤‘0) = 𝑃)))
73 anass 679 . . . . . . . . . . 11 (((⊥ ∧ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉)) ∧ ((#‘𝑤) = (𝑁 + 1) ∧ (𝑤‘0) = 𝑃)) ↔ (⊥ ∧ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉) ∧ ((#‘𝑤) = (𝑁 + 1) ∧ (𝑤‘0) = 𝑃))))
7441intnanr 952 . . . . . . . . . . . 12 ¬ (⊥ ∧ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉) ∧ ((#‘𝑤) = (𝑁 + 1) ∧ (𝑤‘0) = 𝑃)))
7574bifal 1488 . . . . . . . . . . 11 ((⊥ ∧ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉) ∧ ((#‘𝑤) = (𝑁 + 1) ∧ (𝑤‘0) = 𝑃))) ↔ ⊥)
7673, 75bitri 263 . . . . . . . . . 10 (((⊥ ∧ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉)) ∧ ((#‘𝑤) = (𝑁 + 1) ∧ (𝑤‘0) = 𝑃)) ↔ ⊥)
7772, 76bitri 263 . . . . . . . . 9 ((((⊥ ∧ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉)) ∧ (#‘𝑤) = (𝑁 + 1)) ∧ (𝑤‘0) = 𝑃) ↔ ⊥)
7877a1i 11 . . . . . . . 8 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → ((((⊥ ∧ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉)) ∧ (#‘𝑤) = (𝑁 + 1)) ∧ (𝑤‘0) = 𝑃) ↔ ⊥))
7921, 71, 783bitrd 293 . . . . . . 7 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → ((𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ (𝑤‘0) = 𝑃) ↔ ⊥))
8079abbidv 2728 . . . . . 6 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → {𝑤 ∣ (𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ (𝑤‘0) = 𝑃)} = {𝑤 ∣ ⊥})
8141abf 3930 . . . . . 6 {𝑤 ∣ ⊥} = ∅
8280, 81syl6eq 2660 . . . . 5 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → {𝑤 ∣ (𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ (𝑤‘0) = 𝑃)} = ∅)
838, 82syl5eq 2656 . . . 4 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃} = ∅)
8483fveq2d 6107 . . 3 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (#‘{𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃}) = (#‘∅))
85 hash0 13019 . . 3 (#‘∅) = 0
8684, 85syl6eq 2660 . 2 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (#‘{𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃}) = 0)
877, 86eqtrd 2644 1 ((⟨𝑉, 𝐸⟩ RegUSGrph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wfal 1480  wcel 1977  {cab 2596  wne 2780  wral 2896  {crab 2900  Vcvv 3173  c0 3874  {cpr 4127  cop 4131   class class class wbr 4583  cmpt 4643  ran crn 5039  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cmin 10145  cn 10897  0cn0 11169  ..^cfzo 12334  #chash 12979  Word cword 13146   USGrph cusg 25859   Walks cwalk 26026   WWalks cwwlk 26205   WWalksN cwwlkn 26206   RegGrph crgra 26449   RegUSGrph crusgra 26450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-xadd 11823  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-usgra 25862  df-wlk 26036  df-wwlk 26207  df-wwlkn 26208  df-vdgr 26421  df-rgra 26451  df-rusgra 26452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator