Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspsbc2VD Structured version   Visualization version   GIF version

Theorem rspsbc2VD 38112
Description: Virtual deduction proof of rspsbc2 37765. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:: ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ▶   𝐶 ∈ 𝐷   ) 3:: ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   ∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑   ) 4:1,3,?: e13 37996 ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   [𝐴 / 𝑥]∀𝑦 ∈ 𝐷𝜑   ) 5:1,4,?: e13 37996 ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   ∀𝑦 ∈ 𝐷[𝐴 / 𝑥]𝜑   ) 6:2,5,?: e23 38003 ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   [𝐶 / 𝑦][𝐴 / 𝑥]𝜑   ) 7:6: ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ▶   (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑)   ) 8:7: ⊢ (   𝐴 ∈ 𝐵   ▶   (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑))   ) qed:8: ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rspsbc2VD (𝐴𝐵 → (𝐶𝐷 → (∀𝑥𝐵𝑦𝐷 𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem rspsbc2VD
StepHypRef Expression
1 idn2 37859 . . . . 5 (   𝐴𝐵   ,   𝐶𝐷   ▶   𝐶𝐷   )
2 idn1 37811 . . . . . 6 (   𝐴𝐵   ▶   𝐴𝐵   )
3 idn3 37861 . . . . . . 7 (   𝐴𝐵   ,   𝐶𝐷   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   𝑥𝐵𝑦𝐷 𝜑   )
4 rspsbc 3484 . . . . . . 7 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐷 𝜑[𝐴 / 𝑥]𝑦𝐷 𝜑))
52, 3, 4e13 37996 . . . . . 6 (   𝐴𝐵   ,   𝐶𝐷   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   [𝐴 / 𝑥]𝑦𝐷 𝜑   )
6 sbcralg 3480 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐷 𝜑 ↔ ∀𝑦𝐷 [𝐴 / 𝑥]𝜑))
76biimpd 218 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐷 𝜑 → ∀𝑦𝐷 [𝐴 / 𝑥]𝜑))
82, 5, 7e13 37996 . . . . 5 (   𝐴𝐵   ,   𝐶𝐷   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   𝑦𝐷 [𝐴 / 𝑥]𝜑   )
9 rspsbc 3484 . . . . 5 (𝐶𝐷 → (∀𝑦𝐷 [𝐴 / 𝑥]𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑))
101, 8, 9e23 38003 . . . 4 (   𝐴𝐵   ,   𝐶𝐷   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   [𝐶 / 𝑦][𝐴 / 𝑥]𝜑   )
1110in3 37855 . . 3 (   𝐴𝐵   ,   𝐶𝐷   ▶   (∀𝑥𝐵𝑦𝐷 𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑)   )
1211in2 37851 . 2 (   𝐴𝐵   ▶   (𝐶𝐷 → (∀𝑥𝐵𝑦𝐷 𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑))   )
1312in1 37808 1 (𝐴𝐵 → (𝐶𝐷 → (∀𝑥𝐵𝑦𝐷 𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1977  ∀wral 2896  [wsbc 3402 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-v 3175  df-sbc 3403  df-vd1 37807  df-vd2 37815  df-vd3 37827 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator