Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspsbc2VD Structured version   Visualization version   Unicode version

Theorem rspsbc2VD 37245
Description: Virtual deduction proof of rspsbc2 36889. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2::  |-  (. A  e.  B ,. C  e.  D  ->.  C  e.  D ).
3::  |-  (. A  e.  B ,. C  e.  D ,. A. x  e.  B  A. y  e.  D ph  ->.  A. x  e.  B A. y  e.  D ph ).
4:1,3,?: e13 37129  |-  (. A  e.  B ,. C  e.  D ,. A. x  e.  B  A. y  e.  D ph  ->.  [. A  /  x ]. A. y  e.  D ph ).
5:1,4,?: e13 37129  |-  (. A  e.  B ,. C  e.  D ,. A. x  e.  B  A. y  e.  D ph  ->.  A. y  e.  D [. A  /  x ]. ph ).
6:2,5,?: e23 37136  |-  (. A  e.  B ,. C  e.  D ,. A. x  e.  B  A. y  e.  D ph  ->.  [. C  /  y ]. [. A  /  x ]. ph ).
7:6:  |-  (. A  e.  B ,. C  e.  D  ->.  ( A. x  e.  B  A. y  e.  D ph  ->  [. C  /  y ]. [. A  /  x ]. ph ) ).
8:7:  |-  (. A  e.  B  ->.  ( C  e.  D  ->  ( A. x  e.  B A. y  e.  D ph  ->  [. C  /  y ]. [. A  /  x ]. ph ) ) ).
qed:8:  |-  ( A  e.  B  ->  ( C  e.  D  ->  ( A. x  e.  B A. y  e.  D ph  ->  [. C  /  y ]. [. A  /  x ]. ph ) ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rspsbc2VD  |-  ( A  e.  B  ->  ( C  e.  D  ->  ( A. x  e.  B  A. y  e.  D  ph 
->  [. C  /  y ]. [. A  /  x ]. ph ) ) )
Distinct variable groups:    y, A    x, B    x, D, y
Allowed substitution hints:    ph( x, y)    A( x)    B( y)    C( x, y)

Proof of Theorem rspsbc2VD
StepHypRef Expression
1 idn2 36986 . . . . 5  |-  (. A  e.  B ,. C  e.  D  ->.  C  e.  D ).
2 idn1 36938 . . . . . 6  |-  (. A  e.  B  ->.  A  e.  B ).
3 idn3 36988 . . . . . . 7  |-  (. A  e.  B ,. C  e.  D ,. A. x  e.  B  A. y  e.  D  ph  ->.  A. x  e.  B  A. y  e.  D  ph ).
4 rspsbc 3345 . . . . . . 7  |-  ( A  e.  B  ->  ( A. x  e.  B  A. y  e.  D  ph 
->  [. A  /  x ]. A. y  e.  D  ph ) )
52, 3, 4e13 37129 . . . . . 6  |-  (. A  e.  B ,. C  e.  D ,. A. x  e.  B  A. y  e.  D  ph  ->.  [. A  /  x ]. A. y  e.  D  ph ).
6 sbcralg 3341 . . . . . . 7  |-  ( A  e.  B  ->  ( [. A  /  x ]. A. y  e.  D  ph  <->  A. y  e.  D  [. A  /  x ]. ph )
)
76biimpd 211 . . . . . 6  |-  ( A  e.  B  ->  ( [. A  /  x ]. A. y  e.  D  ph 
->  A. y  e.  D  [. A  /  x ]. ph ) )
82, 5, 7e13 37129 . . . . 5  |-  (. A  e.  B ,. C  e.  D ,. A. x  e.  B  A. y  e.  D  ph  ->.  A. y  e.  D  [. A  /  x ]. ph ).
9 rspsbc 3345 . . . . 5  |-  ( C  e.  D  ->  ( A. y  e.  D  [. A  /  x ]. ph 
->  [. C  /  y ]. [. A  /  x ]. ph ) )
101, 8, 9e23 37136 . . . 4  |-  (. A  e.  B ,. C  e.  D ,. A. x  e.  B  A. y  e.  D  ph  ->.  [. C  / 
y ]. [. A  /  x ]. ph ).
1110in3 36982 . . 3  |-  (. A  e.  B ,. C  e.  D  ->.  ( A. x  e.  B  A. y  e.  D  ph  ->  [. C  /  y ]. [. A  /  x ]. ph ) ).
1211in2 36978 . 2  |-  (. A  e.  B  ->.  ( C  e.  D  ->  ( A. x  e.  B  A. y  e.  D  ph  ->  [. C  /  y ]. [. A  /  x ]. ph ) ) ).
1312in1 36935 1  |-  ( A  e.  B  ->  ( C  e.  D  ->  ( A. x  e.  B  A. y  e.  D  ph 
->  [. C  /  y ]. [. A  /  x ]. ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1886   A.wral 2736   [.wsbc 3266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ral 2741  df-v 3046  df-sbc 3267  df-vd1 36934  df-vd2 36942  df-vd3 36954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator