MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rninxp Structured version   Visualization version   GIF version

Theorem rninxp 5492
Description: Range of the intersection with a Cartesian product. (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rninxp (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝐶𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rninxp
StepHypRef Expression
1 dfss3 3558 . 2 (𝐵 ⊆ ran (𝐶𝐴) ↔ ∀𝑦𝐵 𝑦 ∈ ran (𝐶𝐴))
2 ssrnres 5491 . 2 (𝐵 ⊆ ran (𝐶𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵)
3 df-ima 5051 . . . . 5 (𝐶𝐴) = ran (𝐶𝐴)
43eleq2i 2680 . . . 4 (𝑦 ∈ (𝐶𝐴) ↔ 𝑦 ∈ ran (𝐶𝐴))
5 vex 3176 . . . . 5 𝑦 ∈ V
65elima 5390 . . . 4 (𝑦 ∈ (𝐶𝐴) ↔ ∃𝑥𝐴 𝑥𝐶𝑦)
74, 6bitr3i 265 . . 3 (𝑦 ∈ ran (𝐶𝐴) ↔ ∃𝑥𝐴 𝑥𝐶𝑦)
87ralbii 2963 . 2 (∀𝑦𝐵 𝑦 ∈ ran (𝐶𝐴) ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝐶𝑦)
91, 2, 83bitr3i 289 1 (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝐶𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 195   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cin 3539  wss 3540   class class class wbr 4583   × cxp 5036  ran crn 5039  cres 5040  cima 5041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051
This theorem is referenced by:  dminxp  5493  fncnv  5876  exfo  6285  brdom3  9231  brdom5  9232  brdom4  9233
  Copyright terms: Public domain W3C validator