Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > p1val | Structured version Visualization version GIF version |
Description: Value of poset zero. (Contributed by NM, 22-Oct-2011.) |
Ref | Expression |
---|---|
p1val.b | ⊢ 𝐵 = (Base‘𝐾) |
p1val.u | ⊢ 𝑈 = (lub‘𝐾) |
p1val.t | ⊢ 1 = (1.‘𝐾) |
Ref | Expression |
---|---|
p1val | ⊢ (𝐾 ∈ 𝑉 → 1 = (𝑈‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3185 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
2 | p1val.t | . . 3 ⊢ 1 = (1.‘𝐾) | |
3 | fveq2 6103 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (lub‘𝑘) = (lub‘𝐾)) | |
4 | p1val.u | . . . . . 6 ⊢ 𝑈 = (lub‘𝐾) | |
5 | 3, 4 | syl6eqr 2662 | . . . . 5 ⊢ (𝑘 = 𝐾 → (lub‘𝑘) = 𝑈) |
6 | fveq2 6103 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
7 | p1val.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
8 | 6, 7 | syl6eqr 2662 | . . . . 5 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
9 | 5, 8 | fveq12d 6109 | . . . 4 ⊢ (𝑘 = 𝐾 → ((lub‘𝑘)‘(Base‘𝑘)) = (𝑈‘𝐵)) |
10 | df-p1 16863 | . . . 4 ⊢ 1. = (𝑘 ∈ V ↦ ((lub‘𝑘)‘(Base‘𝑘))) | |
11 | fvex 6113 | . . . 4 ⊢ (𝑈‘𝐵) ∈ V | |
12 | 9, 10, 11 | fvmpt 6191 | . . 3 ⊢ (𝐾 ∈ V → (1.‘𝐾) = (𝑈‘𝐵)) |
13 | 2, 12 | syl5eq 2656 | . 2 ⊢ (𝐾 ∈ V → 1 = (𝑈‘𝐵)) |
14 | 1, 13 | syl 17 | 1 ⊢ (𝐾 ∈ 𝑉 → 1 = (𝑈‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ‘cfv 5804 Basecbs 15695 lubclub 16765 1.cp1 16861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-p1 16863 |
This theorem is referenced by: ple1 16867 clatp1cl 29003 xrsp1 29013 op1cl 33490 |
Copyright terms: Public domain | W3C validator |