MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p0le Structured version   Visualization version   GIF version

Theorem p0le 16866
Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.)
Hypotheses
Ref Expression
p0le.b 𝐵 = (Base‘𝐾)
p0le.g 𝐺 = (glb‘𝐾)
p0le.l = (le‘𝐾)
p0le.0 0 = (0.‘𝐾)
p0le.k (𝜑𝐾𝑉)
p0le.x (𝜑𝑋𝐵)
p0le.d (𝜑𝐵 ∈ dom 𝐺)
Assertion
Ref Expression
p0le (𝜑0 𝑋)

Proof of Theorem p0le
StepHypRef Expression
1 p0le.k . . 3 (𝜑𝐾𝑉)
2 p0le.b . . . 4 𝐵 = (Base‘𝐾)
3 p0le.g . . . 4 𝐺 = (glb‘𝐾)
4 p0le.0 . . . 4 0 = (0.‘𝐾)
52, 3, 4p0val 16864 . . 3 (𝐾𝑉0 = (𝐺𝐵))
61, 5syl 17 . 2 (𝜑0 = (𝐺𝐵))
7 p0le.l . . 3 = (le‘𝐾)
8 p0le.d . . 3 (𝜑𝐵 ∈ dom 𝐺)
9 p0le.x . . 3 (𝜑𝑋𝐵)
102, 7, 3, 1, 8, 9glble 16823 . 2 (𝜑 → (𝐺𝐵) 𝑋)
116, 10eqbrtrd 4605 1 (𝜑0 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977   class class class wbr 4583  dom cdm 5038  cfv 5804  Basecbs 15695  lecple 15775  glbcglb 16766  0.cp0 16860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-glb 16798  df-p0 16862
This theorem is referenced by:  op0le  33491  atl0le  33609
  Copyright terms: Public domain W3C validator