Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > p0le | Structured version Visualization version GIF version |
Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.) |
Ref | Expression |
---|---|
p0le.b | ⊢ 𝐵 = (Base‘𝐾) |
p0le.g | ⊢ 𝐺 = (glb‘𝐾) |
p0le.l | ⊢ ≤ = (le‘𝐾) |
p0le.0 | ⊢ 0 = (0.‘𝐾) |
p0le.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
p0le.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
p0le.d | ⊢ (𝜑 → 𝐵 ∈ dom 𝐺) |
Ref | Expression |
---|---|
p0le | ⊢ (𝜑 → 0 ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p0le.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
2 | p0le.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
3 | p0le.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
4 | p0le.0 | . . . 4 ⊢ 0 = (0.‘𝐾) | |
5 | 2, 3, 4 | p0val 16864 | . . 3 ⊢ (𝐾 ∈ 𝑉 → 0 = (𝐺‘𝐵)) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → 0 = (𝐺‘𝐵)) |
7 | p0le.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
8 | p0le.d | . . 3 ⊢ (𝜑 → 𝐵 ∈ dom 𝐺) | |
9 | p0le.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | 2, 7, 3, 1, 8, 9 | glble 16823 | . 2 ⊢ (𝜑 → (𝐺‘𝐵) ≤ 𝑋) |
11 | 6, 10 | eqbrtrd 4605 | 1 ⊢ (𝜑 → 0 ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 dom cdm 5038 ‘cfv 5804 Basecbs 15695 lecple 15775 glbcglb 16766 0.cp0 16860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-glb 16798 df-p0 16862 |
This theorem is referenced by: op0le 33491 atl0le 33609 |
Copyright terms: Public domain | W3C validator |