 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oveq123i Structured version   Visualization version   GIF version

Theorem oveq123i 6563
 Description: Equality inference for operation value. (Contributed by FL, 11-Jul-2010.)
Hypotheses
Ref Expression
oveq123i.1 𝐴 = 𝐶
oveq123i.2 𝐵 = 𝐷
oveq123i.3 𝐹 = 𝐺
Assertion
Ref Expression
oveq123i (𝐴𝐹𝐵) = (𝐶𝐺𝐷)

Proof of Theorem oveq123i
StepHypRef Expression
1 oveq123i.1 . . 3 𝐴 = 𝐶
2 oveq123i.2 . . 3 𝐵 = 𝐷
31, 2oveq12i 6561 . 2 (𝐴𝐹𝐵) = (𝐶𝐹𝐷)
4 oveq123i.3 . . 3 𝐹 = 𝐺
54oveqi 6562 . 2 (𝐶𝐹𝐷) = (𝐶𝐺𝐷)
63, 5eqtri 2632 1 (𝐴𝐹𝐵) = (𝐶𝐺𝐷)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475  (class class class)co 6549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552 This theorem is referenced by:  relowlpssretop  32388  mendvscafval  36779  cytpval  36806
 Copyright terms: Public domain W3C validator