Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendvscafval Structured version   Visualization version   GIF version

Theorem mendvscafval 36779
 Description: Scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mendvscafval.a 𝐴 = (MEndo‘𝑀)
mendvscafval.v · = ( ·𝑠𝑀)
mendvscafval.b 𝐵 = (Base‘𝐴)
mendvscafval.s 𝑆 = (Scalar‘𝑀)
mendvscafval.k 𝐾 = (Base‘𝑆)
mendvscafval.e 𝐸 = (Base‘𝑀)
Assertion
Ref Expression
mendvscafval ( ·𝑠𝐴) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑆(𝑥,𝑦)   · (𝑥,𝑦)   𝐸(𝑥,𝑦)

Proof of Theorem mendvscafval
StepHypRef Expression
1 mendvscafval.a . . 3 𝐴 = (MEndo‘𝑀)
21fveq2i 6106 . 2 ( ·𝑠𝐴) = ( ·𝑠 ‘(MEndo‘𝑀))
3 mendvscafval.b . . . . . . 7 𝐵 = (Base‘𝐴)
41mendbas 36773 . . . . . . 7 (𝑀 LMHom 𝑀) = (Base‘𝐴)
53, 4eqtr4i 2635 . . . . . 6 𝐵 = (𝑀 LMHom 𝑀)
6 eqid 2610 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))
7 eqid 2610 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
8 mendvscafval.s . . . . . 6 𝑆 = (Scalar‘𝑀)
9 mendvscafval.k . . . . . . 7 𝐾 = (Base‘𝑆)
10 eqid 2610 . . . . . . 7 𝐵 = 𝐵
11 mendvscafval.e . . . . . . . . 9 𝐸 = (Base‘𝑀)
1211xpeq1i 5059 . . . . . . . 8 (𝐸 × {𝑥}) = ((Base‘𝑀) × {𝑥})
13 eqid 2610 . . . . . . . 8 𝑦 = 𝑦
14 mendvscafval.v . . . . . . . . 9 · = ( ·𝑠𝑀)
15 ofeq 6797 . . . . . . . . 9 ( · = ( ·𝑠𝑀) → ∘𝑓 · = ∘𝑓 ( ·𝑠𝑀))
1614, 15ax-mp 5 . . . . . . . 8 𝑓 · = ∘𝑓 ( ·𝑠𝑀)
1712, 13, 16oveq123i 6563 . . . . . . 7 ((𝐸 × {𝑥}) ∘𝑓 · 𝑦) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦)
189, 10, 17mpt2eq123i 6616 . . . . . 6 (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))
195, 6, 7, 8, 18mendval 36772 . . . . 5 (𝑀 ∈ V → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))⟩}))
2019fveq2d 6107 . . . 4 (𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))⟩})))
21 fvex 6113 . . . . . . 7 (Base‘𝑆) ∈ V
229, 21eqeltri 2684 . . . . . 6 𝐾 ∈ V
23 fvex 6113 . . . . . . 7 (Base‘𝐴) ∈ V
243, 23eqeltri 2684 . . . . . 6 𝐵 ∈ V
2522, 24mpt2ex 7136 . . . . 5 (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) ∈ V
26 eqid 2610 . . . . . 6 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))⟩})
2726algvsca 36771 . . . . 5 ((𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))⟩})))
2825, 27mp1i 13 . . . 4 (𝑀 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))⟩})))
2920, 28eqtr4d 2647 . . 3 (𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)))
30 fvprc 6097 . . . . . 6 𝑀 ∈ V → (MEndo‘𝑀) = ∅)
3130fveq2d 6107 . . . . 5 𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = ( ·𝑠 ‘∅))
32 df-vsca 15785 . . . . . 6 ·𝑠 = Slot 6
3332str0 15739 . . . . 5 ∅ = ( ·𝑠 ‘∅)
3431, 33syl6eqr 2662 . . . 4 𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = ∅)
35 fvprc 6097 . . . . . . . . 9 𝑀 ∈ V → (Scalar‘𝑀) = ∅)
368, 35syl5eq 2656 . . . . . . . 8 𝑀 ∈ V → 𝑆 = ∅)
3736fveq2d 6107 . . . . . . 7 𝑀 ∈ V → (Base‘𝑆) = (Base‘∅))
38 base0 15740 . . . . . . 7 ∅ = (Base‘∅)
3937, 9, 383eqtr4g 2669 . . . . . 6 𝑀 ∈ V → 𝐾 = ∅)
40 mpt2eq12 6613 . . . . . 6 ((𝐾 = ∅ ∧ 𝐵 = 𝐵) → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = (𝑥 ∈ ∅, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)))
4139, 10, 40sylancl 693 . . . . 5 𝑀 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = (𝑥 ∈ ∅, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)))
42 mpt20 6623 . . . . 5 (𝑥 ∈ ∅, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = ∅
4341, 42syl6eq 2660 . . . 4 𝑀 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = ∅)
4434, 43eqtr4d 2647 . . 3 𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)))
4529, 44pm2.61i 175 . 2 ( ·𝑠 ‘(MEndo‘𝑀)) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))
462, 45eqtri 2632 1 ( ·𝑠𝐴) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ∪ cun 3538  ∅c0 3874  {csn 4125  {cpr 4127  {ctp 4129  ⟨cop 4131   × cxp 5036   ∘ ccom 5042  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551   ∘𝑓 cof 6793  6c6 10951  ndxcnx 15692  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772   LMHom clmhm 18840  MEndocmend 36764 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-lmhm 18843  df-mend 36765 This theorem is referenced by:  mendvsca  36780
 Copyright terms: Public domain W3C validator