MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri2or Structured version   Visualization version   GIF version

Theorem ordtri2or 5739
Description: A trichotomy law for ordinal classes. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ordtri2or ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))

Proof of Theorem ordtri2or
StepHypRef Expression
1 ordtri1 5673 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
21ancoms 468 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
32biimprd 237 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐴𝐵𝐵𝐴))
43orrd 392 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  wcel 1977  wss 3540  Ord word 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643
This theorem is referenced by:  ordtri2or2  5740  onun2i  5760  ordunisuc2  6936  oaass  7528  alephdom  8787  iscard3  8799  nofulllem5  31105
  Copyright terms: Public domain W3C validator