Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabid2 | Structured version Visualization version GIF version |
Description: A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.) |
Ref | Expression |
---|---|
opabid2 | ⊢ (Rel 𝐴 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3176 | . . . 4 ⊢ 𝑧 ∈ V | |
2 | vex 3176 | . . . 4 ⊢ 𝑤 ∈ V | |
3 | opeq1 4340 | . . . . 5 ⊢ (𝑥 = 𝑧 → 〈𝑥, 𝑦〉 = 〈𝑧, 𝑦〉) | |
4 | 3 | eleq1d 2672 | . . . 4 ⊢ (𝑥 = 𝑧 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
5 | opeq2 4341 | . . . . 5 ⊢ (𝑦 = 𝑤 → 〈𝑧, 𝑦〉 = 〈𝑧, 𝑤〉) | |
6 | 5 | eleq1d 2672 | . . . 4 ⊢ (𝑦 = 𝑤 → (〈𝑧, 𝑦〉 ∈ 𝐴 ↔ 〈𝑧, 𝑤〉 ∈ 𝐴)) |
7 | 1, 2, 4, 6 | opelopab 4922 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴) |
8 | 7 | gen2 1714 | . 2 ⊢ ∀𝑧∀𝑤(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴) |
9 | relopab 5169 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} | |
10 | eqrel 5132 | . . 3 ⊢ ((Rel {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ∧ Rel 𝐴) → ({〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴 ↔ ∀𝑧∀𝑤(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴))) | |
11 | 9, 10 | mpan 702 | . 2 ⊢ (Rel 𝐴 → ({〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴 ↔ ∀𝑧∀𝑤(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴))) |
12 | 8, 11 | mpbiri 247 | 1 ⊢ (Rel 𝐴 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 = wceq 1475 ∈ wcel 1977 〈cop 4131 {copab 4642 Rel wrel 5043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-opab 4644 df-xp 5044 df-rel 5045 |
This theorem is referenced by: opabbi2dv 5193 |
Copyright terms: Public domain | W3C validator |