Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noseponlem Structured version   Visualization version   GIF version

Theorem noseponlem 31065
Description: Lemma for nosepon 31066. Consider a case of proper subset domain. (Contributed by Scott Fenton, 21-Sep-2020.)
Assertion
Ref Expression
noseponlem ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem noseponlem
StepHypRef Expression
1 nodmon 31047 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
213ad2ant1 1075 . . 3 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → dom 𝐴 ∈ On)
3 nodmord 31050 . . . . . . 7 (𝐴 No → Ord dom 𝐴)
4 ordirr 5658 . . . . . . 7 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
53, 4syl 17 . . . . . 6 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
653ad2ant1 1075 . . . . 5 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ dom 𝐴 ∈ dom 𝐴)
7 ndmfv 6128 . . . . 5 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
86, 7syl 17 . . . 4 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐴‘dom 𝐴) = ∅)
9 nosgnn0 31055 . . . . . . 7 ¬ ∅ ∈ {1𝑜, 2𝑜}
10 elno3 31052 . . . . . . . . . . 11 (𝐵 No ↔ (𝐵:dom 𝐵⟶{1𝑜, 2𝑜} ∧ dom 𝐵 ∈ On))
1110simplbi 475 . . . . . . . . . 10 (𝐵 No 𝐵:dom 𝐵⟶{1𝑜, 2𝑜})
12113ad2ant2 1076 . . . . . . . . 9 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → 𝐵:dom 𝐵⟶{1𝑜, 2𝑜})
13 simp3 1056 . . . . . . . . 9 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵)
1412, 13ffvelrnd 6268 . . . . . . . 8 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐵‘dom 𝐴) ∈ {1𝑜, 2𝑜})
15 eleq1 2676 . . . . . . . 8 ((𝐵‘dom 𝐴) = ∅ → ((𝐵‘dom 𝐴) ∈ {1𝑜, 2𝑜} ↔ ∅ ∈ {1𝑜, 2𝑜}))
1614, 15syl5ibcom 234 . . . . . . 7 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ((𝐵‘dom 𝐴) = ∅ → ∅ ∈ {1𝑜, 2𝑜}))
179, 16mtoi 189 . . . . . 6 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ (𝐵‘dom 𝐴) = ∅)
1817neqned 2789 . . . . 5 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐵‘dom 𝐴) ≠ ∅)
1918necomd 2837 . . . 4 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ∅ ≠ (𝐵‘dom 𝐴))
208, 19eqnetrd 2849 . . 3 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴))
21 fveq2 6103 . . . . 5 (𝑥 = dom 𝐴 → (𝐴𝑥) = (𝐴‘dom 𝐴))
22 fveq2 6103 . . . . 5 (𝑥 = dom 𝐴 → (𝐵𝑥) = (𝐵‘dom 𝐴))
2321, 22neeq12d 2843 . . . 4 (𝑥 = dom 𝐴 → ((𝐴𝑥) ≠ (𝐵𝑥) ↔ (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴)))
2423rspcev 3282 . . 3 ((dom 𝐴 ∈ On ∧ (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴)) → ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥))
252, 20, 24syl2anc 691 . 2 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥))
26 df-ne 2782 . . . 4 ((𝐴𝑥) ≠ (𝐵𝑥) ↔ ¬ (𝐴𝑥) = (𝐵𝑥))
2726rexbii 3023 . . 3 (∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ ∃𝑥 ∈ On ¬ (𝐴𝑥) = (𝐵𝑥))
28 rexnal 2978 . . 3 (∃𝑥 ∈ On ¬ (𝐴𝑥) = (𝐵𝑥) ↔ ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
2927, 28bitri 263 . 2 (∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
3025, 29sylib 207 1 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  c0 3874  {cpr 4127  dom cdm 5038  Ord word 5639  Oncon0 5640  wf 5800  cfv 5804  1𝑜c1o 7440  2𝑜c2o 7441   No csur 31037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1o 7447  df-2o 7448  df-no 31040
This theorem is referenced by:  nosepon  31066
  Copyright terms: Public domain W3C validator