Mathbox for Emmett Weisz < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfsetrecs Structured version   Visualization version   GIF version

Theorem nfsetrecs 42232
 Description: Bound-variable hypothesis builder for setrecs. (Contributed by Emmett Weisz, 21-Oct-2021.)
Hypothesis
Ref Expression
nfsetrecs.1 𝑥𝐹
Assertion
Ref Expression
nfsetrecs 𝑥setrecs(𝐹)

Proof of Theorem nfsetrecs
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-setrecs 42230 . 2 setrecs(𝐹) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
2 nfv 1830 . . . . . . . 8 𝑥 𝑤𝑦
3 nfv 1830 . . . . . . . . 9 𝑥 𝑤𝑧
4 nfsetrecs.1 . . . . . . . . . . 11 𝑥𝐹
5 nfcv 2751 . . . . . . . . . . 11 𝑥𝑤
64, 5nffv 6110 . . . . . . . . . 10 𝑥(𝐹𝑤)
7 nfcv 2751 . . . . . . . . . 10 𝑥𝑧
86, 7nfss 3561 . . . . . . . . 9 𝑥(𝐹𝑤) ⊆ 𝑧
93, 8nfim 1813 . . . . . . . 8 𝑥(𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)
102, 9nfim 1813 . . . . . . 7 𝑥(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧))
1110nfal 2139 . . . . . 6 𝑥𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧))
12 nfv 1830 . . . . . 6 𝑥 𝑦𝑧
1311, 12nfim 1813 . . . . 5 𝑥(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)
1413nfal 2139 . . . 4 𝑥𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)
1514nfab 2755 . . 3 𝑥{𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
1615nfuni 4378 . 2 𝑥 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
171, 16nfcxfr 2749 1 𝑥setrecs(𝐹)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473  {cab 2596  Ⅎwnfc 2738   ⊆ wss 3540  ∪ cuni 4372  ‘cfv 5804  setrecscsetrecs 42229 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-setrecs 42230 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator