Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrecseq Structured version   Visualization version   GIF version

Theorem setrecseq 42231
Description: Equality theorem for set recursion. (Contributed by Emmett Weisz, 17-Feb-2021.)
Assertion
Ref Expression
setrecseq (𝐹 = 𝐺 → setrecs(𝐹) = setrecs(𝐺))

Proof of Theorem setrecseq
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6102 . . . . . . . . . 10 (𝐹 = 𝐺 → (𝐹𝑤) = (𝐺𝑤))
21sseq1d 3595 . . . . . . . . 9 (𝐹 = 𝐺 → ((𝐹𝑤) ⊆ 𝑧 ↔ (𝐺𝑤) ⊆ 𝑧))
32imbi2d 329 . . . . . . . 8 (𝐹 = 𝐺 → ((𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧) ↔ (𝑤𝑧 → (𝐺𝑤) ⊆ 𝑧)))
43imbi2d 329 . . . . . . 7 (𝐹 = 𝐺 → ((𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) ↔ (𝑤𝑦 → (𝑤𝑧 → (𝐺𝑤) ⊆ 𝑧))))
54albidv 1836 . . . . . 6 (𝐹 = 𝐺 → (∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) ↔ ∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐺𝑤) ⊆ 𝑧))))
65imbi1d 330 . . . . 5 (𝐹 = 𝐺 → ((∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧) ↔ (∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐺𝑤) ⊆ 𝑧)) → 𝑦𝑧)))
76albidv 1836 . . . 4 (𝐹 = 𝐺 → (∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧) ↔ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐺𝑤) ⊆ 𝑧)) → 𝑦𝑧)))
87abbidv 2728 . . 3 (𝐹 = 𝐺 → {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐺𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
98unieqd 4382 . 2 (𝐹 = 𝐺 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐺𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
10 df-setrecs 42230 . 2 setrecs(𝐹) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
11 df-setrecs 42230 . 2 setrecs(𝐺) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐺𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
129, 10, 113eqtr4g 2669 1 (𝐹 = 𝐺 → setrecs(𝐹) = setrecs(𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473   = wceq 1475  {cab 2596  wss 3540   cuni 4372  cfv 5804  setrecscsetrecs 42229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-in 3547  df-ss 3554  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-setrecs 42230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator