Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfopdALT Structured version   Visualization version   GIF version

Theorem nfopdALT 33276
 Description: Deduction version of bound-variable hypothesis builder nfop 4356. This shows how the deduction version of a not-free theorem such as nfop 4356 can be created from the corresponding not-free inference theorem. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfopdALT.1 (𝜑𝑥𝐴)
nfopdALT.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfopdALT (𝜑𝑥𝐴, 𝐵⟩)

Proof of Theorem nfopdALT
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfopdALT.1 . 2 (𝜑𝑥𝐴)
2 nfopdALT.2 . 2 (𝜑𝑥𝐵)
3 abidnf 3342 . . . 4 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
43adantr 480 . . 3 ((𝑥𝐴𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
5 abidnf 3342 . . . 4 (𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧𝐵} = 𝐵)
65adantl 481 . . 3 ((𝑥𝐴𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧𝐵} = 𝐵)
74, 6opeq12d 4348 . 2 ((𝑥𝐴𝑥𝐵) → ⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩ = ⟨𝐴, 𝐵⟩)
8 nfaba1 2756 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐴}
9 nfaba1 2756 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐵}
108, 9nfop 4356 . 2 𝑥⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩
111, 2, 7, 10nfded2 33273 1 (𝜑𝑥𝐴, 𝐵⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∀wal 1473   = wceq 1475   ∈ wcel 1977  {cab 2596  Ⅎwnfc 2738  ⟨cop 4131 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator