Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfiOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of nf5i 2011 as of 5-Oct-2021. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nfiOLD.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
nfiOLD | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfOLD 1712 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | nfiOLD.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 1, 2 | mpgbir 1717 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1473 ℲwnfOLD 1700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 |
This theorem depends on definitions: df-bi 196 df-nfOLD 1712 |
This theorem is referenced by: nfthOLD 1726 nfnthOLD 1727 nfvOLD 1858 nfe1OLD 2020 nfdhOLD 2182 19.9hOLD 2194 nfa1OLDOLD 2195 19.21hOLD 2204 19.23hOLD 2208 exlimihOLD 2210 exlimdhOLD 2212 nfdiOLD 2213 nfim1OLD 2216 nfan1OLD 2224 hbanOLD 2228 hb3anOLD 2229 |
Copyright terms: Public domain | W3C validator |