MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiOLD Structured version   Visualization version   GIF version

Theorem nfiOLD 1725
Description: Obsolete proof of nf5i 2011 as of 5-Oct-2021. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
nfiOLD.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
nfiOLD 𝑥𝜑

Proof of Theorem nfiOLD
StepHypRef Expression
1 df-nfOLD 1712 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
2 nfiOLD.1 . 2 (𝜑 → ∀𝑥𝜑)
31, 2mpgbir 1717 1 𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473  wnfOLD 1700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713
This theorem depends on definitions:  df-bi 196  df-nfOLD 1712
This theorem is referenced by:  nfthOLD  1726  nfnthOLD  1727  nfvOLD  1858  nfe1OLD  2020  nfdhOLD  2182  19.9hOLD  2194  nfa1OLDOLD  2195  19.21hOLD  2204  19.23hOLD  2208  exlimihOLD  2210  exlimdhOLD  2212  nfdiOLD  2213  nfim1OLD  2216  nfan1OLD  2224  hbanOLD  2228  hb3anOLD  2229
  Copyright terms: Public domain W3C validator