Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hb3anOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of hb3an 2114 as of 6-Oct-2021. (Contributed by NM, 14-Sep-2003.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hbOLD.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
hbOLD.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
hbOLD.3 | ⊢ (𝜒 → ∀𝑥𝜒) |
Ref | Expression |
---|---|
hb3anOLD | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbOLD.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | nfiOLD 1725 | . . 3 ⊢ Ⅎ𝑥𝜑 |
3 | hbOLD.2 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
4 | 3 | nfiOLD 1725 | . . 3 ⊢ Ⅎ𝑥𝜓 |
5 | hbOLD.3 | . . . 4 ⊢ (𝜒 → ∀𝑥𝜒) | |
6 | 5 | nfiOLD 1725 | . . 3 ⊢ Ⅎ𝑥𝜒 |
7 | 2, 4, 6 | nf3anOLD 2227 | . 2 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) |
8 | 7 | nfriOLD 2177 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1031 ∀wal 1473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-an 385 df-3an 1033 df-ex 1696 df-nfOLD 1712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |