MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hb3anOLD Structured version   Visualization version   GIF version

Theorem hb3anOLD 2229
Description: Obsolete proof of hb3an 2114 as of 6-Oct-2021. (Contributed by NM, 14-Sep-2003.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
hbOLD.1 (𝜑 → ∀𝑥𝜑)
hbOLD.2 (𝜓 → ∀𝑥𝜓)
hbOLD.3 (𝜒 → ∀𝑥𝜒)
Assertion
Ref Expression
hb3anOLD ((𝜑𝜓𝜒) → ∀𝑥(𝜑𝜓𝜒))

Proof of Theorem hb3anOLD
StepHypRef Expression
1 hbOLD.1 . . . 4 (𝜑 → ∀𝑥𝜑)
21nfiOLD 1725 . . 3 𝑥𝜑
3 hbOLD.2 . . . 4 (𝜓 → ∀𝑥𝜓)
43nfiOLD 1725 . . 3 𝑥𝜓
5 hbOLD.3 . . . 4 (𝜒 → ∀𝑥𝜒)
65nfiOLD 1725 . . 3 𝑥𝜒
72, 4, 6nf3anOLD 2227 . 2 𝑥(𝜑𝜓𝜒)
87nfriOLD 2177 1 ((𝜑𝜓𝜒) → ∀𝑥(𝜑𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031  wal 1473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034
This theorem depends on definitions:  df-bi 196  df-an 385  df-3an 1033  df-ex 1696  df-nfOLD 1712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator