Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.9hOLD Structured version   Visualization version   GIF version

Theorem 19.9hOLD 2194
 Description: Obsolete proof of 19.9h 2106 as of 6-Oct-2021. (Contributed by FL, 24-Mar-2007.) (Proof shortened by Wolf Lammen, 5-Jan-2018.) (Proof shortened by Wolf Lammen, 14-Jul-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
19.9hOLD.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
19.9hOLD (∃𝑥𝜑𝜑)

Proof of Theorem 19.9hOLD
StepHypRef Expression
1 19.9hOLD.1 . . 3 (𝜑 → ∀𝑥𝜑)
21nfiOLD 1725 . 2 𝑥𝜑
3219.9OLD 2193 1 (∃𝑥𝜑𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195  ∀wal 1473  ∃wex 1695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-ex 1696  df-nfOLD 1712 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator