Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimdhOLD Structured version   Visualization version   GIF version

Theorem exlimdhOLD 2212
 Description: Obsolete proof of exlimdh 2134 as of 6-Oct-2021. (Contributed by NM, 28-Jan-1997.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
exlimdhOLD.1 (𝜑 → ∀𝑥𝜑)
exlimdhOLD.2 (𝜒 → ∀𝑥𝜒)
exlimdhOLD.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exlimdhOLD (𝜑 → (∃𝑥𝜓𝜒))

Proof of Theorem exlimdhOLD
StepHypRef Expression
1 exlimdhOLD.1 . . 3 (𝜑 → ∀𝑥𝜑)
21nfiOLD 1725 . 2 𝑥𝜑
3 exlimdhOLD.2 . . 3 (𝜒 → ∀𝑥𝜒)
43nfiOLD 1725 . 2 𝑥𝜒
5 exlimdhOLD.3 . 2 (𝜑 → (𝜓𝜒))
62, 4, 5exlimdOLD 2211 1 (𝜑 → (∃𝑥𝜓𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473  ∃wex 1695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-ex 1696  df-nfOLD 1712 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator