Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nbgrnself | Structured version Visualization version GIF version |
Description: A vertex in a graph is not a neighbor of itself. (Contributed by by AV, 3-Nov-2020.) (Revised by AV, 21-Mar-2021.) |
Ref | Expression |
---|---|
nbgrisvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbgrnself | ⊢ ∀𝑣 ∈ 𝑉 𝑣 ∉ (𝐺 NeighbVtx 𝑣) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neldifsnd 4263 | . . . . 5 ⊢ (𝑣 ∈ 𝑉 → ¬ 𝑣 ∈ (𝑉 ∖ {𝑣})) | |
2 | 1 | intnanrd 954 | . . . 4 ⊢ (𝑣 ∈ 𝑉 → ¬ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
3 | df-nel 2783 | . . . . 5 ⊢ (𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ ¬ 𝑣 ∈ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}) | |
4 | preq2 4213 | . . . . . . . 8 ⊢ (𝑛 = 𝑣 → {𝑣, 𝑛} = {𝑣, 𝑣}) | |
5 | 4 | sseq1d 3595 | . . . . . . 7 ⊢ (𝑛 = 𝑣 → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑣} ⊆ 𝑒)) |
6 | 5 | rexbidv 3034 | . . . . . 6 ⊢ (𝑛 = 𝑣 → (∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
7 | 6 | elrab 3331 | . . . . 5 ⊢ (𝑣 ∈ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
8 | 3, 7 | xchbinx 323 | . . . 4 ⊢ (𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ ¬ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
9 | 2, 8 | sylibr 223 | . . 3 ⊢ (𝑣 ∈ 𝑉 → 𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}) |
10 | eqidd 2611 | . . . 4 ⊢ (𝑣 ∈ 𝑉 → 𝑣 = 𝑣) | |
11 | nbgrisvtx.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
12 | eqid 2610 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
13 | 11, 12 | nbgrval 40560 | . . . 4 ⊢ (𝑣 ∈ 𝑉 → (𝐺 NeighbVtx 𝑣) = {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}) |
14 | 10, 13 | neleq12d 2887 | . . 3 ⊢ (𝑣 ∈ 𝑉 → (𝑣 ∉ (𝐺 NeighbVtx 𝑣) ↔ 𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒})) |
15 | 9, 14 | mpbird 246 | . 2 ⊢ (𝑣 ∈ 𝑉 → 𝑣 ∉ (𝐺 NeighbVtx 𝑣)) |
16 | 15 | rgen 2906 | 1 ⊢ ∀𝑣 ∈ 𝑉 𝑣 ∉ (𝐺 NeighbVtx 𝑣) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∉ wnel 2781 ∀wral 2896 ∃wrex 2897 {crab 2900 ∖ cdif 3537 ⊆ wss 3540 {csn 4125 {cpr 4127 ‘cfv 5804 (class class class)co 6549 Vtxcvtx 25673 Edgcedga 25792 NeighbVtx cnbgr 40550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-nbgr 40554 |
This theorem is referenced by: usgrnbnself 40584 nbgrnself2 40585 |
Copyright terms: Public domain | W3C validator |