Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neleq12d | Structured version Visualization version GIF version |
Description: Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
neleq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
neleq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
neleq12d | ⊢ (𝜑 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neleq12d.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | neleq12d.2 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | 1, 2 | eleq12d 2682 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
4 | 3 | notbid 307 | . 2 ⊢ (𝜑 → (¬ 𝐴 ∈ 𝐶 ↔ ¬ 𝐵 ∈ 𝐷)) |
5 | df-nel 2783 | . 2 ⊢ (𝐴 ∉ 𝐶 ↔ ¬ 𝐴 ∈ 𝐶) | |
6 | df-nel 2783 | . 2 ⊢ (𝐵 ∉ 𝐷 ↔ ¬ 𝐵 ∈ 𝐷) | |
7 | 4, 5, 6 | 3bitr4g 302 | 1 ⊢ (𝜑 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 = wceq 1475 ∈ wcel 1977 ∉ wnel 2781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 df-cleq 2603 df-clel 2606 df-nel 2783 |
This theorem is referenced by: neleq1 2888 neleq2 2889 usgrares1 25939 nbgranself 25963 nbgrassovt 25964 frgrancvvdeqlem2 26558 uhgrspan1 40527 nbgrnself 40583 nbgrnself2 40585 frgrncvvdeqlem2 41470 |
Copyright terms: Public domain | W3C validator |