Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mulvfv | Structured version Visualization version GIF version |
Description: Scalar multiplication at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) |
Ref | Expression |
---|---|
mulvfv | ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulvval 37693 | . . . 4 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) = (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥)))) | |
2 | 1 | fveq1d 6105 | . . 3 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) → ((𝐴.𝑣𝐵)‘𝐶) = ((𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥)))‘𝐶)) |
3 | fveq2 6103 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵‘𝑥) = (𝐵‘𝐶)) | |
4 | 3 | oveq2d 6565 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝐴 · (𝐵‘𝑥)) = (𝐴 · (𝐵‘𝐶))) |
5 | eqid 2610 | . . . 4 ⊢ (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥))) = (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥))) | |
6 | ovex 6577 | . . . 4 ⊢ (𝐴 · (𝐵‘𝐶)) ∈ V | |
7 | 4, 5, 6 | fvmpt 6191 | . . 3 ⊢ (𝐶 ∈ ℝ → ((𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥)))‘𝐶) = (𝐴 · (𝐵‘𝐶))) |
8 | 2, 7 | sylan9eq 2664 | . 2 ⊢ (((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵‘𝐶))) |
9 | 8 | 3impa 1251 | 1 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ↦ cmpt 4643 ‘cfv 5804 (class class class)co 6549 ℝcr 9814 · cmul 9820 .𝑣ctimesr 37684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-cnex 9871 ax-resscn 9872 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-mulv 37690 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |