MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrisval Structured version   Visualization version   GIF version

Theorem mrisval 16113
Description: Value of the set of independent sets of a Moore system. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrisval.1 𝑁 = (mrCls‘𝐴)
mrisval.2 𝐼 = (mrInd‘𝐴)
Assertion
Ref Expression
mrisval (𝐴 ∈ (Moore‘𝑋) → 𝐼 = {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
Distinct variable groups:   𝐴,𝑠,𝑥   𝑋,𝑠
Allowed substitution hints:   𝐼(𝑥,𝑠)   𝑁(𝑥,𝑠)   𝑋(𝑥)

Proof of Theorem mrisval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 mrisval.2 . . 3 𝐼 = (mrInd‘𝐴)
2 fvssunirn 6127 . . . . 5 (Moore‘𝑋) ⊆ ran Moore
32sseli 3564 . . . 4 (𝐴 ∈ (Moore‘𝑋) → 𝐴 ran Moore)
4 unieq 4380 . . . . . . 7 (𝑐 = 𝐴 𝑐 = 𝐴)
54pweqd 4113 . . . . . 6 (𝑐 = 𝐴 → 𝒫 𝑐 = 𝒫 𝐴)
6 fveq2 6103 . . . . . . . . . . 11 (𝑐 = 𝐴 → (mrCls‘𝑐) = (mrCls‘𝐴))
7 mrisval.1 . . . . . . . . . . 11 𝑁 = (mrCls‘𝐴)
86, 7syl6eqr 2662 . . . . . . . . . 10 (𝑐 = 𝐴 → (mrCls‘𝑐) = 𝑁)
98fveq1d 6105 . . . . . . . . 9 (𝑐 = 𝐴 → ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥})) = (𝑁‘(𝑠 ∖ {𝑥})))
109eleq2d 2673 . . . . . . . 8 (𝑐 = 𝐴 → (𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
1110notbid 307 . . . . . . 7 (𝑐 = 𝐴 → (¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
1211ralbidv 2969 . . . . . 6 (𝑐 = 𝐴 → (∀𝑥𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥})) ↔ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
135, 12rabeqbidv 3168 . . . . 5 (𝑐 = 𝐴 → {𝑠 ∈ 𝒫 𝑐 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥}))} = {𝑠 ∈ 𝒫 𝐴 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
14 df-mri 16071 . . . . 5 mrInd = (𝑐 ran Moore ↦ {𝑠 ∈ 𝒫 𝑐 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥}))})
15 vuniex 6852 . . . . . . 7 𝑐 ∈ V
1615pwex 4774 . . . . . 6 𝒫 𝑐 ∈ V
1716rabex 4740 . . . . 5 {𝑠 ∈ 𝒫 𝑐 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥}))} ∈ V
1813, 14, 17fvmpt3i 6196 . . . 4 (𝐴 ran Moore → (mrInd‘𝐴) = {𝑠 ∈ 𝒫 𝐴 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
193, 18syl 17 . . 3 (𝐴 ∈ (Moore‘𝑋) → (mrInd‘𝐴) = {𝑠 ∈ 𝒫 𝐴 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
201, 19syl5eq 2656 . 2 (𝐴 ∈ (Moore‘𝑋) → 𝐼 = {𝑠 ∈ 𝒫 𝐴 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
21 mreuni 16083 . . . 4 (𝐴 ∈ (Moore‘𝑋) → 𝐴 = 𝑋)
2221pweqd 4113 . . 3 (𝐴 ∈ (Moore‘𝑋) → 𝒫 𝐴 = 𝒫 𝑋)
2322rabeqdv 3167 . 2 (𝐴 ∈ (Moore‘𝑋) → {𝑠 ∈ 𝒫 𝐴 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))} = {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
2420, 23eqtrd 2644 1 (𝐴 ∈ (Moore‘𝑋) → 𝐼 = {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1475  wcel 1977  wral 2896  {crab 2900  cdif 3537  𝒫 cpw 4108  {csn 4125   cuni 4372  ran crn 5039  cfv 5804  Moorecmre 16065  mrClscmrc 16066  mrIndcmri 16067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-mre 16069  df-mri 16071
This theorem is referenced by:  ismri  16114
  Copyright terms: Public domain W3C validator