Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptrabexOLD Structured version   Visualization version   GIF version

Theorem mptrabexOLD 6393
 Description: Obsolete version of mptrabex 6392 as of 26-Mar-2021. (Contributed by AV, 16-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
mptrabexOLD.1 𝐴𝑉
Assertion
Ref Expression
mptrabexOLD (𝑥 ∈ {𝑦𝐴𝜑} ↦ 𝐵) ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem mptrabexOLD
StepHypRef Expression
1 mptrabexOLD.1 . . . 4 𝐴𝑉
21elexi 3186 . . 3 𝐴 ∈ V
32rabex 4740 . 2 {𝑦𝐴𝜑} ∈ V
43mptex 6390 1 (𝑥 ∈ {𝑦𝐴𝜑} ↦ 𝐵) ∈ V
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 1977  {crab 2900  Vcvv 3173   ↦ cmpt 4643 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator