Proof of Theorem mdetunilem1
Step | Hyp | Ref
| Expression |
1 | | simpr3 1062 |
. 2
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → 𝐹 ≠ 𝐺) |
2 | | simpl3 1059 |
. 2
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) |
3 | | simpr2 1061 |
. . 3
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → 𝐺 ∈ 𝑁) |
4 | | simpl2 1058 |
. . . 4
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → 𝐸 ∈ 𝐵) |
5 | | simpr1 1060 |
. . . 4
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → 𝐹 ∈ 𝑁) |
6 | | simpl1 1057 |
. . . . 5
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → 𝜑) |
7 | | mdetuni.al |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
8 | 6, 7 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
9 | | oveq 6555 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐸 → (𝑦𝑥𝑤) = (𝑦𝐸𝑤)) |
10 | | oveq 6555 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐸 → (𝑧𝑥𝑤) = (𝑧𝐸𝑤)) |
11 | 9, 10 | eqeq12d 2625 |
. . . . . . . . 9
⊢ (𝑥 = 𝐸 → ((𝑦𝑥𝑤) = (𝑧𝑥𝑤) ↔ (𝑦𝐸𝑤) = (𝑧𝐸𝑤))) |
12 | 11 | ralbidv 2969 |
. . . . . . . 8
⊢ (𝑥 = 𝐸 → (∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤) ↔ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤))) |
13 | 12 | anbi2d 736 |
. . . . . . 7
⊢ (𝑥 = 𝐸 → ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) ↔ (𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)))) |
14 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑥 = 𝐸 → (𝐷‘𝑥) = (𝐷‘𝐸)) |
15 | 14 | eqeq1d 2612 |
. . . . . . 7
⊢ (𝑥 = 𝐸 → ((𝐷‘𝑥) = 0 ↔ (𝐷‘𝐸) = 0 )) |
16 | 13, 15 | imbi12d 333 |
. . . . . 6
⊢ (𝑥 = 𝐸 → (((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 ) ↔ ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ))) |
17 | 16 | ralbidv 2969 |
. . . . 5
⊢ (𝑥 = 𝐸 → (∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 ) ↔ ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ))) |
18 | | neeq1 2844 |
. . . . . . . 8
⊢ (𝑦 = 𝐹 → (𝑦 ≠ 𝑧 ↔ 𝐹 ≠ 𝑧)) |
19 | | oveq1 6556 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐹 → (𝑦𝐸𝑤) = (𝐹𝐸𝑤)) |
20 | 19 | eqeq1d 2612 |
. . . . . . . . 9
⊢ (𝑦 = 𝐹 → ((𝑦𝐸𝑤) = (𝑧𝐸𝑤) ↔ (𝐹𝐸𝑤) = (𝑧𝐸𝑤))) |
21 | 20 | ralbidv 2969 |
. . . . . . . 8
⊢ (𝑦 = 𝐹 → (∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤) ↔ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤))) |
22 | 18, 21 | anbi12d 743 |
. . . . . . 7
⊢ (𝑦 = 𝐹 → ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) ↔ (𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)))) |
23 | 22 | imbi1d 330 |
. . . . . 6
⊢ (𝑦 = 𝐹 → (((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ) ↔ ((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ))) |
24 | 23 | ralbidv 2969 |
. . . . 5
⊢ (𝑦 = 𝐹 → (∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ) ↔ ∀𝑧 ∈ 𝑁 ((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ))) |
25 | 17, 24 | rspc2va 3294 |
. . . 4
⊢ (((𝐸 ∈ 𝐵 ∧ 𝐹 ∈ 𝑁) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) → ∀𝑧 ∈ 𝑁 ((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 )) |
26 | 4, 5, 8, 25 | syl21anc 1317 |
. . 3
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → ∀𝑧 ∈ 𝑁 ((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 )) |
27 | | neeq2 2845 |
. . . . . 6
⊢ (𝑧 = 𝐺 → (𝐹 ≠ 𝑧 ↔ 𝐹 ≠ 𝐺)) |
28 | | oveq1 6556 |
. . . . . . . 8
⊢ (𝑧 = 𝐺 → (𝑧𝐸𝑤) = (𝐺𝐸𝑤)) |
29 | 28 | eqeq2d 2620 |
. . . . . . 7
⊢ (𝑧 = 𝐺 → ((𝐹𝐸𝑤) = (𝑧𝐸𝑤) ↔ (𝐹𝐸𝑤) = (𝐺𝐸𝑤))) |
30 | 29 | ralbidv 2969 |
. . . . . 6
⊢ (𝑧 = 𝐺 → (∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤) ↔ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤))) |
31 | 27, 30 | anbi12d 743 |
. . . . 5
⊢ (𝑧 = 𝐺 → ((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) ↔ (𝐹 ≠ 𝐺 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)))) |
32 | 31 | imbi1d 330 |
. . . 4
⊢ (𝑧 = 𝐺 → (((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ) ↔ ((𝐹 ≠ 𝐺 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) → (𝐷‘𝐸) = 0 ))) |
33 | 32 | rspcva 3280 |
. . 3
⊢ ((𝐺 ∈ 𝑁 ∧ ∀𝑧 ∈ 𝑁 ((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 )) → ((𝐹 ≠ 𝐺 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) → (𝐷‘𝐸) = 0 )) |
34 | 3, 26, 33 | syl2anc 691 |
. 2
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → ((𝐹 ≠ 𝐺 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) → (𝐷‘𝐸) = 0 )) |
35 | 1, 2, 34 | mp2and 711 |
1
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → (𝐷‘𝐸) = 0 ) |