Step | Hyp | Ref
| Expression |
1 | | lpolcon.o |
. . 3
⊢ (𝜑 → ⊥ ∈ 𝑃) |
2 | | lpolcon.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ 𝑋) |
3 | | lpolcon.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
4 | | eqid 2610 |
. . . . 5
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
5 | | eqid 2610 |
. . . . 5
⊢
(0g‘𝑊) = (0g‘𝑊) |
6 | | eqid 2610 |
. . . . 5
⊢
(LSAtoms‘𝑊) =
(LSAtoms‘𝑊) |
7 | | eqid 2610 |
. . . . 5
⊢
(LSHyp‘𝑊) =
(LSHyp‘𝑊) |
8 | | lpolcon.p |
. . . . 5
⊢ 𝑃 = (LPol‘𝑊) |
9 | 3, 4, 5, 6, 7, 8 | islpolN 35790 |
. . . 4
⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥))))) |
10 | 2, 9 | syl 17 |
. . 3
⊢ (𝜑 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥))))) |
11 | 1, 10 | mpbid 221 |
. 2
⊢ (𝜑 → ( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥)))) |
12 | | simpr2 1061 |
. . 3
⊢ (( ⊥
:𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥))) → ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥))) |
13 | | lpolcon.x |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
14 | | lpolcon.y |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ 𝑉) |
15 | | lpolcon.c |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝑌) |
16 | 13, 14, 15 | 3jca 1235 |
. . . 4
⊢ (𝜑 → (𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌)) |
17 | | fvex 6113 |
. . . . . . . 8
⊢
(Base‘𝑊)
∈ V |
18 | 3, 17 | eqeltri 2684 |
. . . . . . 7
⊢ 𝑉 ∈ V |
19 | 18 | elpw2 4755 |
. . . . . 6
⊢ (𝑋 ∈ 𝒫 𝑉 ↔ 𝑋 ⊆ 𝑉) |
20 | 13, 19 | sylibr 223 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑉) |
21 | 18 | elpw2 4755 |
. . . . . 6
⊢ (𝑌 ∈ 𝒫 𝑉 ↔ 𝑌 ⊆ 𝑉) |
22 | 14, 21 | sylibr 223 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝒫 𝑉) |
23 | | sseq1 3589 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝑉 ↔ 𝑋 ⊆ 𝑉)) |
24 | | biidd 251 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑦 ⊆ 𝑉 ↔ 𝑦 ⊆ 𝑉)) |
25 | | sseq1 3589 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑦)) |
26 | 23, 24, 25 | 3anbi123d 1391 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) ↔ (𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦))) |
27 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → ( ⊥ ‘𝑥) = ( ⊥ ‘𝑋)) |
28 | 27 | sseq2d 3596 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥) ↔ ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑋))) |
29 | 26, 28 | imbi12d 333 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ↔ ((𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑋)))) |
30 | | biidd 251 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → (𝑋 ⊆ 𝑉 ↔ 𝑋 ⊆ 𝑉)) |
31 | | sseq1 3589 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → (𝑦 ⊆ 𝑉 ↔ 𝑌 ⊆ 𝑉)) |
32 | | sseq2 3590 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → (𝑋 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑌)) |
33 | 30, 31, 32 | 3anbi123d 1391 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → ((𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦) ↔ (𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌))) |
34 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → ( ⊥ ‘𝑦) = ( ⊥ ‘𝑌)) |
35 | 34 | sseq1d 3595 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → (( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑋) ↔ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) |
36 | 33, 35 | imbi12d 333 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (((𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑋)) ↔ ((𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)))) |
37 | 29, 36 | sylan9bb 732 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ↔ ((𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)))) |
38 | 37 | spc2gv 3269 |
. . . . 5
⊢ ((𝑋 ∈ 𝒫 𝑉 ∧ 𝑌 ∈ 𝒫 𝑉) → (∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) → ((𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)))) |
39 | 20, 22, 38 | syl2anc 691 |
. . . 4
⊢ (𝜑 → (∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) → ((𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)))) |
40 | 16, 39 | mpid 43 |
. . 3
⊢ (𝜑 → (∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) |
41 | 12, 40 | syl5 33 |
. 2
⊢ (𝜑 → (( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥))) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) |
42 | 11, 41 | mpd 15 |
1
⊢ (𝜑 → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |