Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lerelxr Structured version   Visualization version   GIF version

Theorem lerelxr 9980
 Description: 'Less than or equal' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerelxr ≤ ⊆ (ℝ* × ℝ*)

Proof of Theorem lerelxr
StepHypRef Expression
1 df-le 9959 . 2 ≤ = ((ℝ* × ℝ*) ∖ < )
2 difss 3699 . 2 ((ℝ* × ℝ*) ∖ < ) ⊆ (ℝ* × ℝ*)
31, 2eqsstri 3598 1 ≤ ⊆ (ℝ* × ℝ*)
 Colors of variables: wff setvar class Syntax hints:   ∖ cdif 3537   ⊆ wss 3540   × cxp 5036  ◡ccnv 5037  ℝ*cxr 9952   < clt 9953   ≤ cle 9954 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-le 9959 This theorem is referenced by:  lerel  9981  dfle2  11856  dflt2  11857  ledm  17047  lern  17048  letsr  17050  xrsle  19585  znle  19703
 Copyright terms: Public domain W3C validator