Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltrel | Structured version Visualization version GIF version |
Description: 'Less than' is a relation. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ltrel | ⊢ Rel < |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelxr 9978 | . 2 ⊢ < ⊆ (ℝ* × ℝ*) | |
2 | relxp 5150 | . 2 ⊢ Rel (ℝ* × ℝ*) | |
3 | relss 5129 | . 2 ⊢ ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < )) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel < |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3540 × cxp 5036 Rel wrel 5043 ℝ*cxr 9952 < clt 9953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-un 3545 df-in 3547 df-ss 3554 df-pr 4128 df-opab 4644 df-xp 5044 df-rel 5045 df-xr 9957 df-ltxr 9958 |
This theorem is referenced by: dflt2 11857 gtiso 28861 |
Copyright terms: Public domain | W3C validator |