Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lemeet1 | Structured version Visualization version GIF version |
Description: A meet's first argument is less than or equal to the meet. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
Ref | Expression |
---|---|
meetval2.b | ⊢ 𝐵 = (Base‘𝐾) |
meetval2.l | ⊢ ≤ = (le‘𝐾) |
meetval2.m | ⊢ ∧ = (meet‘𝐾) |
meetval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
meetval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
meetval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
meetlem.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
Ref | Expression |
---|---|
lemeet1 | ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meetval2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | meetval2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | meetval2.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
4 | meetval2.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
5 | meetval2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | meetval2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | meetlem.e | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | meetlem 16848 | . 2 ⊢ (𝜑 → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌)))) |
9 | 8 | simplld 787 | 1 ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 〈cop 4131 class class class wbr 4583 dom cdm 5038 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 lecple 15775 meetcmee 16768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-glb 16798 df-meet 16800 |
This theorem is referenced by: meetle 16851 latmle1 16899 |
Copyright terms: Public domain | W3C validator |