MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsind Structured version   Visualization version   GIF version

Theorem lbsind 18901
Description: A basis is linearly independent; that is, every element has a span which trivially intersects the span of the remainder of the basis. (Contributed by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
lbsss.v 𝑉 = (Base‘𝑊)
lbsss.j 𝐽 = (LBasis‘𝑊)
lbssp.n 𝑁 = (LSpan‘𝑊)
lbsind.f 𝐹 = (Scalar‘𝑊)
lbsind.s · = ( ·𝑠𝑊)
lbsind.k 𝐾 = (Base‘𝐹)
lbsind.z 0 = (0g𝐹)
Assertion
Ref Expression
lbsind (((𝐵𝐽𝐸𝐵) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))

Proof of Theorem lbsind
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4260 . 2 (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴𝐾𝐴0 ))
2 elfvdm 6130 . . . . . . . 8 (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis)
3 lbsss.j . . . . . . . 8 𝐽 = (LBasis‘𝑊)
42, 3eleq2s 2706 . . . . . . 7 (𝐵𝐽𝑊 ∈ dom LBasis)
5 lbsss.v . . . . . . . 8 𝑉 = (Base‘𝑊)
6 lbsind.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
7 lbsind.s . . . . . . . 8 · = ( ·𝑠𝑊)
8 lbsind.k . . . . . . . 8 𝐾 = (Base‘𝐹)
9 lbssp.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
10 lbsind.z . . . . . . . 8 0 = (0g𝐹)
115, 6, 7, 8, 3, 9, 10islbs 18897 . . . . . . 7 (𝑊 ∈ dom LBasis → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
124, 11syl 17 . . . . . 6 (𝐵𝐽 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
1312ibi 255 . . . . 5 (𝐵𝐽 → (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
1413simp3d 1068 . . . 4 (𝐵𝐽 → ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))
15 oveq2 6557 . . . . . . 7 (𝑥 = 𝐸 → (𝑦 · 𝑥) = (𝑦 · 𝐸))
16 sneq 4135 . . . . . . . . 9 (𝑥 = 𝐸 → {𝑥} = {𝐸})
1716difeq2d 3690 . . . . . . . 8 (𝑥 = 𝐸 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝐸}))
1817fveq2d 6107 . . . . . . 7 (𝑥 = 𝐸 → (𝑁‘(𝐵 ∖ {𝑥})) = (𝑁‘(𝐵 ∖ {𝐸})))
1915, 18eleq12d 2682 . . . . . 6 (𝑥 = 𝐸 → ((𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2019notbid 307 . . . . 5 (𝑥 = 𝐸 → (¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ ¬ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
21 oveq1 6556 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 · 𝐸) = (𝐴 · 𝐸))
2221eleq1d 2672 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})) ↔ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2322notbid 307 . . . . 5 (𝑦 = 𝐴 → (¬ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})) ↔ ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2420, 23rspc2v 3293 . . . 4 ((𝐸𝐵𝐴 ∈ (𝐾 ∖ { 0 })) → (∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2514, 24syl5com 31 . . 3 (𝐵𝐽 → ((𝐸𝐵𝐴 ∈ (𝐾 ∖ { 0 })) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2625impl 648 . 2 (((𝐵𝐽𝐸𝐵) ∧ 𝐴 ∈ (𝐾 ∖ { 0 })) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))
271, 26sylan2br 492 1 (((𝐵𝐽𝐸𝐵) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  cdif 3537  wss 3540  {csn 4125  dom cdm 5038  cfv 5804  (class class class)co 6549  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  LSpanclspn 18792  LBasisclbs 18895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-lbs 18896
This theorem is referenced by:  lbsind2  18902
  Copyright terms: Public domain W3C validator