Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  istermo Structured version   Visualization version   GIF version

Theorem istermo 16474
 Description: The predicate "is a terminal object" of a category. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
isinito.b 𝐵 = (Base‘𝐶)
isinito.h 𝐻 = (Hom ‘𝐶)
isinito.c (𝜑𝐶 ∈ Cat)
isinito.i (𝜑𝐼𝐵)
Assertion
Ref Expression
istermo (𝜑 → (𝐼 ∈ (TermO‘𝐶) ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝐼)))
Distinct variable groups:   𝐵,𝑏   𝐶,𝑏,   𝐼,𝑏,
Allowed substitution hints:   𝜑(,𝑏)   𝐵()   𝐻(,𝑏)

Proof of Theorem istermo
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 isinito.c . . . 4 (𝜑𝐶 ∈ Cat)
2 isinito.b . . . 4 𝐵 = (Base‘𝐶)
3 isinito.h . . . 4 𝐻 = (Hom ‘𝐶)
41, 2, 3termoval 16471 . . 3 (𝜑 → (TermO‘𝐶) = {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑖)})
54eleq2d 2673 . 2 (𝜑 → (𝐼 ∈ (TermO‘𝐶) ↔ 𝐼 ∈ {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑖)}))
6 isinito.i . . 3 (𝜑𝐼𝐵)
7 oveq2 6557 . . . . . . 7 (𝑖 = 𝐼 → (𝑏𝐻𝑖) = (𝑏𝐻𝐼))
87eleq2d 2673 . . . . . 6 (𝑖 = 𝐼 → ( ∈ (𝑏𝐻𝑖) ↔ ∈ (𝑏𝐻𝐼)))
98eubidv 2478 . . . . 5 (𝑖 = 𝐼 → (∃! ∈ (𝑏𝐻𝑖) ↔ ∃! ∈ (𝑏𝐻𝐼)))
109ralbidv 2969 . . . 4 (𝑖 = 𝐼 → (∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑖) ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝐼)))
1110elrab3 3332 . . 3 (𝐼𝐵 → (𝐼 ∈ {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑖)} ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝐼)))
126, 11syl 17 . 2 (𝜑 → (𝐼 ∈ {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑖)} ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝐼)))
135, 12bitrd 267 1 (𝜑 → (𝐼 ∈ (TermO‘𝐶) ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝐼)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475   ∈ wcel 1977  ∃!weu 2458  ∀wral 2896  {crab 2900  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  Hom chom 15779  Catccat 16148  TermOctermo 16462 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-termo 16465 This theorem is referenced by:  istermoi  16477  zrtermorngc  41793  zrtermoringc  41862
 Copyright terms: Public domain W3C validator