Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isinito | Structured version Visualization version GIF version |
Description: The predicate "is an initial object" of a category. (Contributed by AV, 3-Apr-2020.) |
Ref | Expression |
---|---|
isinito.b | ⊢ 𝐵 = (Base‘𝐶) |
isinito.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isinito.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isinito.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
Ref | Expression |
---|---|
isinito | ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isinito.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
2 | isinito.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | isinito.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | 1, 2, 3 | initoval 16470 | . . 3 ⊢ (𝜑 → (InitO‘𝐶) = {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏)}) |
5 | 4 | eleq2d 2673 | . 2 ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏)})) |
6 | isinito.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
7 | oveq1 6556 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑖𝐻𝑏) = (𝐼𝐻𝑏)) | |
8 | 7 | eleq2d 2673 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (ℎ ∈ (𝑖𝐻𝑏) ↔ ℎ ∈ (𝐼𝐻𝑏))) |
9 | 8 | eubidv 2478 | . . . . 5 ⊢ (𝑖 = 𝐼 → (∃!ℎ ℎ ∈ (𝑖𝐻𝑏) ↔ ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
10 | 9 | ralbidv 2969 | . . . 4 ⊢ (𝑖 = 𝐼 → (∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
11 | 10 | elrab3 3332 | . . 3 ⊢ (𝐼 ∈ 𝐵 → (𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏)} ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
12 | 6, 11 | syl 17 | . 2 ⊢ (𝜑 → (𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏)} ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
13 | 5, 12 | bitrd 267 | 1 ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 = wceq 1475 ∈ wcel 1977 ∃!weu 2458 ∀wral 2896 {crab 2900 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 Hom chom 15779 Catccat 16148 InitOcinito 16461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-inito 16464 |
This theorem is referenced by: isinitoi 16476 initoeu2 16489 zrinitorngc 41792 irinitoringc 41861 zrninitoringc 41863 |
Copyright terms: Public domain | W3C validator |