Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > istdrg | Structured version Visualization version GIF version |
Description: Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istrg.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
istdrg.1 | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
istdrg | ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3758 | . . 3 ⊢ (𝑅 ∈ (TopRing ∩ DivRing) ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing)) | |
2 | 1 | anbi1i 727 | . 2 ⊢ ((𝑅 ∈ (TopRing ∩ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
3 | fveq2 6103 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
4 | istrg.1 | . . . . . 6 ⊢ 𝑀 = (mulGrp‘𝑅) | |
5 | 3, 4 | syl6eqr 2662 | . . . . 5 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝑀) |
6 | fveq2 6103 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
7 | istdrg.1 | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
8 | 6, 7 | syl6eqr 2662 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
9 | 5, 8 | oveq12d 6567 | . . . 4 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = (𝑀 ↾s 𝑈)) |
10 | 9 | eleq1d 2672 | . . 3 ⊢ (𝑟 = 𝑅 → (((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp ↔ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
11 | df-tdrg 21774 | . . 3 ⊢ TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp} | |
12 | 10, 11 | elrab2 3333 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ (TopRing ∩ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
13 | df-3an 1033 | . 2 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) | |
14 | 2, 12, 13 | 3bitr4i 291 | 1 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∩ cin 3539 ‘cfv 5804 (class class class)co 6549 ↾s cress 15696 mulGrpcmgp 18312 Unitcui 18462 DivRingcdr 18570 TopGrpctgp 21685 TopRingctrg 21769 TopDRingctdrg 21770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 df-ov 6552 df-tdrg 21774 |
This theorem is referenced by: tdrgunit 21780 tdrgtrg 21786 tdrgdrng 21787 istdrg2 21791 nrgtdrg 22307 |
Copyright terms: Public domain | W3C validator |