MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istdrg2 Structured version   Visualization version   GIF version

Theorem istdrg2 21791
Description: A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istdrg2.m 𝑀 = (mulGrp‘𝑅)
istdrg2.b 𝐵 = (Base‘𝑅)
istdrg2.z 0 = (0g𝑅)
Assertion
Ref Expression
istdrg2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))

Proof of Theorem istdrg2
StepHypRef Expression
1 istdrg2.m . . 3 𝑀 = (mulGrp‘𝑅)
2 eqid 2610 . . 3 (Unit‘𝑅) = (Unit‘𝑅)
31, 2istdrg 21779 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp))
4 istdrg2.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
5 istdrg2.z . . . . . . . . 9 0 = (0g𝑅)
64, 2, 5isdrng 18574 . . . . . . . 8 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })))
76simprbi 479 . . . . . . 7 (𝑅 ∈ DivRing → (Unit‘𝑅) = (𝐵 ∖ { 0 }))
87adantl 481 . . . . . 6 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → (Unit‘𝑅) = (𝐵 ∖ { 0 }))
98oveq2d 6565 . . . . 5 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → (𝑀s (Unit‘𝑅)) = (𝑀s (𝐵 ∖ { 0 })))
109eleq1d 2672 . . . 4 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → ((𝑀s (Unit‘𝑅)) ∈ TopGrp ↔ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
1110pm5.32i 667 . . 3 (((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
12 df-3an 1033 . . 3 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp))
13 df-3an 1033 . . 3 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
1411, 12, 133bitr4i 291 . 2 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp) ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
153, 14bitri 263 1 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  cdif 3537  {csn 4125  cfv 5804  (class class class)co 6549  Basecbs 15695  s cress 15696  0gc0g 15923  mulGrpcmgp 18312  Ringcrg 18370  Unitcui 18462  DivRingcdr 18570  TopGrpctgp 21685  TopRingctrg 21769  TopDRingctdrg 21770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-drng 18572  df-tdrg 21774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator