Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isperp Structured version   Visualization version   GIF version

Theorem isperp 25407
 Description: Property for 2 lines A, B to be perpendicular. Item (ii) of definition 8.11 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
isperp.b (𝜑𝐵 ∈ ran 𝐿)
Assertion
Ref Expression
isperp (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
Distinct variable groups:   𝑣,𝑢,𝑥,𝐴   𝑢,𝐵,𝑣,𝑥   𝑢,𝐺,𝑣,𝑥   𝜑,𝑢,𝑣,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑣,𝑢)   𝐼(𝑥,𝑣,𝑢)   𝐿(𝑥,𝑣,𝑢)   (𝑥,𝑣,𝑢)

Proof of Theorem isperp
Dummy variables 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4584 . . 3 (𝐴(⟂G‘𝐺)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (⟂G‘𝐺))
2 df-perpg 25391 . . . . . 6 ⟂G = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔))})
32a1i 11 . . . . 5 (𝜑 → ⟂G = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔))}))
4 simpr 476 . . . . . . . . . . . 12 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
54fveq2d 6107 . . . . . . . . . . 11 ((𝜑𝑔 = 𝐺) → (LineG‘𝑔) = (LineG‘𝐺))
6 isperp.l . . . . . . . . . . 11 𝐿 = (LineG‘𝐺)
75, 6syl6eqr 2662 . . . . . . . . . 10 ((𝜑𝑔 = 𝐺) → (LineG‘𝑔) = 𝐿)
87rneqd 5274 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → ran (LineG‘𝑔) = ran 𝐿)
98eleq2d 2673 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (𝑎 ∈ ran (LineG‘𝑔) ↔ 𝑎 ∈ ran 𝐿))
108eleq2d 2673 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (𝑏 ∈ ran (LineG‘𝑔) ↔ 𝑏 ∈ ran 𝐿))
119, 10anbi12d 743 . . . . . . 7 ((𝜑𝑔 = 𝐺) → ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ↔ (𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿)))
124fveq2d 6107 . . . . . . . . . 10 ((𝜑𝑔 = 𝐺) → (∟G‘𝑔) = (∟G‘𝐺))
1312eleq2d 2673 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → (⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔) ↔ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
1413ralbidv 2969 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (∀𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔) ↔ ∀𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
1514rexralbidv 3040 . . . . . . 7 ((𝜑𝑔 = 𝐺) → (∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔) ↔ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
1611, 15anbi12d 743 . . . . . 6 ((𝜑𝑔 = 𝐺) → (((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔)) ↔ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))))
1716opabbidv 4648 . . . . 5 ((𝜑𝑔 = 𝐺) → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))})
18 isperp.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
19 elex 3185 . . . . . 6 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
2018, 19syl 17 . . . . 5 (𝜑𝐺 ∈ V)
21 fvex 6113 . . . . . . . . 9 (LineG‘𝐺) ∈ V
226, 21eqeltri 2684 . . . . . . . 8 𝐿 ∈ V
23 rnexg 6990 . . . . . . . 8 (𝐿 ∈ V → ran 𝐿 ∈ V)
2422, 23mp1i 13 . . . . . . 7 (𝜑 → ran 𝐿 ∈ V)
25 xpexg 6858 . . . . . . 7 ((ran 𝐿 ∈ V ∧ ran 𝐿 ∈ V) → (ran 𝐿 × ran 𝐿) ∈ V)
2624, 24, 25syl2anc 691 . . . . . 6 (𝜑 → (ran 𝐿 × ran 𝐿) ∈ V)
27 opabssxp 5116 . . . . . . 7 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿)
2827a1i 11 . . . . . 6 (𝜑 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿))
2926, 28ssexd 4733 . . . . 5 (𝜑 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} ∈ V)
303, 17, 20, 29fvmptd 6197 . . . 4 (𝜑 → (⟂G‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))})
3130eleq2d 2673 . . 3 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ (⟂G‘𝐺) ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))}))
321, 31syl5bb 271 . 2 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))}))
33 isperp.a . . 3 (𝜑𝐴 ∈ ran 𝐿)
34 isperp.b . . 3 (𝜑𝐵 ∈ ran 𝐿)
35 ineq12 3771 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝑏) = (𝐴𝐵))
36 simpll 786 . . . . . 6 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ 𝑥 ∈ (𝑎𝑏)) → 𝑎 = 𝐴)
37 simpllr 795 . . . . . . 7 ((((𝑎 = 𝐴𝑏 = 𝐵) ∧ 𝑥 ∈ (𝑎𝑏)) ∧ 𝑢𝑎) → 𝑏 = 𝐵)
3837raleqdv 3121 . . . . . 6 ((((𝑎 = 𝐴𝑏 = 𝐵) ∧ 𝑥 ∈ (𝑎𝑏)) ∧ 𝑢𝑎) → (∀𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
3936, 38raleqbidva 3131 . . . . 5 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ 𝑥 ∈ (𝑎𝑏)) → (∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
4035, 39rexeqbidva 3132 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
4140opelopab2a 4915 . . 3 ((𝐴 ∈ ran 𝐿𝐵 ∈ ran 𝐿) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
4233, 34, 41syl2anc 691 . 2 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
4332, 42bitrd 267 1 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  ⟨cop 4131   class class class wbr 4583  {copab 4642   ↦ cmpt 4643   × cxp 5036  ran crn 5039  ‘cfv 5804  ⟨“cs3 13438  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136  ∟Gcrag 25388  ⟂Gcperpg 25390 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-perpg 25391 This theorem is referenced by:  perpcom  25408  perpneq  25409  isperp2  25410
 Copyright terms: Public domain W3C validator