Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islat | Structured version Visualization version GIF version |
Description: The predicate "is a lattice." (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
Ref | Expression |
---|---|
islat.b | ⊢ 𝐵 = (Base‘𝐾) |
islat.j | ⊢ ∨ = (join‘𝐾) |
islat.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
islat | ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6103 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (join‘𝑙) = (join‘𝐾)) | |
2 | islat.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
3 | 1, 2 | syl6eqr 2662 | . . . . 5 ⊢ (𝑙 = 𝐾 → (join‘𝑙) = ∨ ) |
4 | 3 | dmeqd 5248 | . . . 4 ⊢ (𝑙 = 𝐾 → dom (join‘𝑙) = dom ∨ ) |
5 | fveq2 6103 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (Base‘𝑙) = (Base‘𝐾)) | |
6 | islat.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
7 | 5, 6 | syl6eqr 2662 | . . . . 5 ⊢ (𝑙 = 𝐾 → (Base‘𝑙) = 𝐵) |
8 | 7 | sqxpeqd 5065 | . . . 4 ⊢ (𝑙 = 𝐾 → ((Base‘𝑙) × (Base‘𝑙)) = (𝐵 × 𝐵)) |
9 | 4, 8 | eqeq12d 2625 | . . 3 ⊢ (𝑙 = 𝐾 → (dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ↔ dom ∨ = (𝐵 × 𝐵))) |
10 | fveq2 6103 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (meet‘𝑙) = (meet‘𝐾)) | |
11 | islat.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
12 | 10, 11 | syl6eqr 2662 | . . . . 5 ⊢ (𝑙 = 𝐾 → (meet‘𝑙) = ∧ ) |
13 | 12 | dmeqd 5248 | . . . 4 ⊢ (𝑙 = 𝐾 → dom (meet‘𝑙) = dom ∧ ) |
14 | 13, 8 | eqeq12d 2625 | . . 3 ⊢ (𝑙 = 𝐾 → (dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ↔ dom ∧ = (𝐵 × 𝐵))) |
15 | 9, 14 | anbi12d 743 | . 2 ⊢ (𝑙 = 𝐾 → ((dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ∧ dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙))) ↔ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
16 | df-lat 16869 | . 2 ⊢ Lat = {𝑙 ∈ Poset ∣ (dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ∧ dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)))} | |
17 | 15, 16 | elrab2 3333 | 1 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 × cxp 5036 dom cdm 5038 ‘cfv 5804 Basecbs 15695 Posetcpo 16763 joincjn 16767 meetcmee 16768 Latclat 16868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-xp 5044 df-dm 5048 df-iota 5768 df-fv 5812 df-lat 16869 |
This theorem is referenced by: latcl2 16871 latlem 16872 latpos 16873 latjcom 16882 latmcom 16898 clatl 16939 odulatb 16966 |
Copyright terms: Public domain | W3C validator |