Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlat3N Structured version   Visualization version   GIF version

Theorem ishlat3N 33659
Description: The predicate "is a Hilbert lattice". Note that the superposition principle is expressed in the compact form 𝑧𝐴(𝑥 𝑧) = (𝑦 𝑧). The exchange property and atomicity are provided by 𝐾 ∈ CvLat, and "minimum height 4" is shown explicitly. (Contributed by NM, 8-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
ishlat.b 𝐵 = (Base‘𝐾)
ishlat.l = (le‘𝐾)
ishlat.s < = (lt‘𝐾)
ishlat.j = (join‘𝐾)
ishlat.z 0 = (0.‘𝐾)
ishlat.u 1 = (1.‘𝐾)
ishlat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ishlat3N (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧
Allowed substitution hints:   < (𝑥,𝑦,𝑧)   1 (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   0 (𝑥,𝑦,𝑧)

Proof of Theorem ishlat3N
StepHypRef Expression
1 ishlat.b . . 3 𝐵 = (Base‘𝐾)
2 ishlat.l . . 3 = (le‘𝐾)
3 ishlat.s . . 3 < = (lt‘𝐾)
4 ishlat.j . . 3 = (join‘𝐾)
5 ishlat.z . . 3 0 = (0.‘𝐾)
6 ishlat.u . . 3 1 = (1.‘𝐾)
7 ishlat.a . . 3 𝐴 = (Atoms‘𝐾)
81, 2, 3, 4, 5, 6, 7ishlat1 33657 . 2 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
9 simpll3 1095 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝐾 ∈ CvLat)
10 simplrl 796 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑥𝐴)
11 simplrr 797 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑦𝐴)
12 simpr 476 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑧𝐴)
137, 2, 4cvlsupr3 33649 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 𝑧) = (𝑦 𝑧) ↔ (𝑥𝑦 → (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
149, 10, 11, 12, 13syl13anc 1320 . . . . . . 7 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → ((𝑥 𝑧) = (𝑦 𝑧) ↔ (𝑥𝑦 → (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
1514rexbidva 3031 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) → (∃𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧) ↔ ∃𝑧𝐴 (𝑥𝑦 → (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
16 ne0i 3880 . . . . . . . 8 (𝑥𝐴𝐴 ≠ ∅)
1716ad2antrl 760 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) → 𝐴 ≠ ∅)
18 r19.37zv 4019 . . . . . . 7 (𝐴 ≠ ∅ → (∃𝑧𝐴 (𝑥𝑦 → (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ↔ (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
1917, 18syl 17 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) → (∃𝑧𝐴 (𝑥𝑦 → (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ↔ (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
2015, 19bitr2d 268 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ↔ ∃𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧)))
21202ralbidva 2971 . . . 4 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧)))
2221anbi1d 737 . . 3 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) → ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))) ↔ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
2322pm5.32i 667 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
248, 23bitri 263 1 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  c0 3874   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  ltcplt 16764  joincjn 16767  0.cp0 16860  1.cp1 16861  CLatccla 16930  OMLcoml 33480  Atomscatm 33568  CvLatclc 33570  HLchlt 33655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator