Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimag Structured version   Visualization version   GIF version

Theorem intimag 36967
Description: Requirement for the image under the intersection of relations to equal the intersection of the images of those relations. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
intimag (∀𝑦(∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → ( 𝐴𝐵) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)})
Distinct variable groups:   𝑥,𝑎,𝑦,𝐴   𝐵,𝑎,𝑥,𝑦   𝐴,𝑏   𝐵,𝑏,𝑎,𝑦,𝑥

Proof of Theorem intimag
StepHypRef Expression
1 r19.12 3045 . . . . 5 (∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎 → ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎)
2 id 22 . . . . 5 ((∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → (∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎))
31, 2impbid2 215 . . . 4 ((∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → (∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎 ↔ ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎))
4 elimaint 36959 . . . 4 (𝑦 ∈ ( 𝐴𝐵) ↔ ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
5 elintima 36964 . . . 4 (𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)} ↔ ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎)
63, 4, 53bitr4g 302 . . 3 ((∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → (𝑦 ∈ ( 𝐴𝐵) ↔ 𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}))
76alimi 1730 . 2 (∀𝑦(∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → ∀𝑦(𝑦 ∈ ( 𝐴𝐵) ↔ 𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}))
8 dfcleq 2604 . 2 (( 𝐴𝐵) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)} ↔ ∀𝑦(𝑦 ∈ ( 𝐴𝐵) ↔ 𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}))
97, 8sylibr 223 1 (∀𝑦(∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → ( 𝐴𝐵) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wal 1473   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  cop 4131   cint 4410  cima 5041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051
This theorem is referenced by:  intimasn  36968
  Copyright terms: Public domain W3C validator