MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intasym Structured version   Visualization version   GIF version

Theorem intasym 5430
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intasym ((𝑅𝑅) ⊆ I ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem intasym
StepHypRef Expression
1 relcnv 5422 . . 3 Rel 𝑅
2 relin2 5160 . . 3 (Rel 𝑅 → Rel (𝑅𝑅))
3 ssrel 5130 . . 3 (Rel (𝑅𝑅) → ((𝑅𝑅) ⊆ I ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑦⟩ ∈ I )))
41, 2, 3mp2b 10 . 2 ((𝑅𝑅) ⊆ I ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ))
5 elin 3758 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
6 df-br 4584 . . . . . 6 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
7 vex 3176 . . . . . . . 8 𝑥 ∈ V
8 vex 3176 . . . . . . . 8 𝑦 ∈ V
97, 8brcnv 5227 . . . . . . 7 (𝑥𝑅𝑦𝑦𝑅𝑥)
10 df-br 4584 . . . . . . 7 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
119, 10bitr3i 265 . . . . . 6 (𝑦𝑅𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
126, 11anbi12i 729 . . . . 5 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
135, 12bitr4i 266 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
14 df-br 4584 . . . . 5 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
158ideq 5196 . . . . 5 (𝑥 I 𝑦𝑥 = 𝑦)
1614, 15bitr3i 265 . . . 4 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
1713, 16imbi12i 339 . . 3 ((⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
18172albii 1738 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
194, 18bitri 263 1 ((𝑅𝑅) ⊆ I ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473  wcel 1977  cin 3539  wss 3540  cop 4131   class class class wbr 4583   I cid 4948  ccnv 5037  Rel wrel 5043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator