Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinxsng Structured version   Visualization version   GIF version

Theorem iinxsng 4536
 Description: A singleton index picks out an instance of an indexed intersection's argument. (Contributed by NM, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Hypothesis
Ref Expression
iinxsng.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iinxsng (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem iinxsng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iin 4458 . 2 𝑥 ∈ {𝐴}𝐵 = {𝑦 ∣ ∀𝑥 ∈ {𝐴}𝑦𝐵}
2 iinxsng.1 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
32eleq2d 2673 . . . 4 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
43ralsng 4165 . . 3 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝑦𝐵𝑦𝐶))
54abbi1dv 2730 . 2 (𝐴𝑉 → {𝑦 ∣ ∀𝑥 ∈ {𝐴}𝑦𝐵} = 𝐶)
61, 5syl5eq 2656 1 (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  {cab 2596  ∀wral 2896  {csn 4125  ∩ ciin 4456 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-v 3175  df-sbc 3403  df-sn 4126  df-iin 4458 This theorem is referenced by:  polatN  34235
 Copyright terms: Public domain W3C validator