Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapval Structured version   Visualization version   GIF version

Theorem hvmapval 36067
Description: Value of map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
hvmapval.h 𝐻 = (LHyp‘𝐾)
hvmapval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hvmapval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hvmapval.v 𝑉 = (Base‘𝑈)
hvmapval.p + = (+g𝑈)
hvmapval.t · = ( ·𝑠𝑈)
hvmapval.z 0 = (0g𝑈)
hvmapval.s 𝑆 = (Scalar‘𝑈)
hvmapval.r 𝑅 = (Base‘𝑆)
hvmapval.m 𝑀 = ((HVMap‘𝐾)‘𝑊)
hvmapval.k (𝜑 → (𝐾𝐴𝑊𝐻))
hvmapval.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
hvmapval (𝜑 → (𝑀𝑋) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
Distinct variable groups:   𝑡,𝑗,𝑣,𝐾   𝑡,𝑊   𝑡,𝑂   𝑅,𝑗   𝑗,𝑊,𝑣   𝑣,𝑉   𝑗,𝑋,𝑡,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑡,𝑗)   𝐴(𝑣,𝑡,𝑗)   + (𝑣,𝑡,𝑗)   𝑅(𝑣,𝑡)   𝑆(𝑣,𝑡,𝑗)   · (𝑣,𝑡,𝑗)   𝑈(𝑣,𝑡,𝑗)   𝐻(𝑣,𝑡,𝑗)   𝑀(𝑣,𝑡,𝑗)   𝑂(𝑣,𝑗)   𝑉(𝑡,𝑗)   0 (𝑣,𝑡,𝑗)

Proof of Theorem hvmapval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hvmapval.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hvmapval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hvmapval.o . . . 4 𝑂 = ((ocH‘𝐾)‘𝑊)
4 hvmapval.v . . . 4 𝑉 = (Base‘𝑈)
5 hvmapval.p . . . 4 + = (+g𝑈)
6 hvmapval.t . . . 4 · = ( ·𝑠𝑈)
7 hvmapval.z . . . 4 0 = (0g𝑈)
8 hvmapval.s . . . 4 𝑆 = (Scalar‘𝑈)
9 hvmapval.r . . . 4 𝑅 = (Base‘𝑆)
10 hvmapval.m . . . 4 𝑀 = ((HVMap‘𝐾)‘𝑊)
11 hvmapval.k . . . 4 (𝜑 → (𝐾𝐴𝑊𝐻))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hvmapfval 36066 . . 3 (𝜑𝑀 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))))
1312fveq1d 6105 . 2 (𝜑 → (𝑀𝑋) = ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋))
14 hvmapval.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
15 fvex 6113 . . . . 5 (Base‘𝑈) ∈ V
164, 15eqeltri 2684 . . . 4 𝑉 ∈ V
1716mptex 6390 . . 3 (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))) ∈ V
18 sneq 4135 . . . . . . . 8 (𝑥 = 𝑋 → {𝑥} = {𝑋})
1918fveq2d 6107 . . . . . . 7 (𝑥 = 𝑋 → (𝑂‘{𝑥}) = (𝑂‘{𝑋}))
20 oveq2 6557 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑗 · 𝑥) = (𝑗 · 𝑋))
2120oveq2d 6565 . . . . . . . 8 (𝑥 = 𝑋 → (𝑡 + (𝑗 · 𝑥)) = (𝑡 + (𝑗 · 𝑋)))
2221eqeq2d 2620 . . . . . . 7 (𝑥 = 𝑋 → (𝑣 = (𝑡 + (𝑗 · 𝑥)) ↔ 𝑣 = (𝑡 + (𝑗 · 𝑋))))
2319, 22rexeqbidv 3130 . . . . . 6 (𝑥 = 𝑋 → (∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)) ↔ ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))
2423riotabidv 6513 . . . . 5 (𝑥 = 𝑋 → (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))
2524mpteq2dv 4673 . . . 4 (𝑥 = 𝑋 → (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
26 eqid 2610 . . . 4 (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))
2725, 26fvmptg 6189 . . 3 ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))) ∈ V) → ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
2814, 17, 27sylancl 693 . 2 (𝜑 → ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
2913, 28eqtrd 2644 1 (𝜑 → (𝑀𝑋) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  cdif 3537  {csn 4125  cmpt 4643  cfv 5804  crio 6510  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  LHypclh 34288  DVecHcdvh 35385  ocHcoch 35654  HVMapchvm 36063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-hvmap 36064
This theorem is referenced by:  hvmapvalvalN  36068  hvmapidN  36069  hdmapevec2  36146
  Copyright terms: Public domain W3C validator