Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hst1a | Structured version Visualization version GIF version |
Description: Unit value of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hst1a | ⊢ (𝑆 ∈ CHStates → (normℎ‘(𝑆‘ ℋ)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishst 28457 | . 2 ⊢ (𝑆 ∈ CHStates ↔ (𝑆: Cℋ ⟶ ℋ ∧ (normℎ‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (((𝑆‘𝑥) ·ih (𝑆‘𝑦)) = 0 ∧ (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) +ℎ (𝑆‘𝑦)))))) | |
2 | 1 | simp2bi 1070 | 1 ⊢ (𝑆 ∈ CHStates → (normℎ‘(𝑆‘ ℋ)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ⊆ wss 3540 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 0cc0 9815 1c1 9816 ℋchil 27160 +ℎ cva 27161 ·ih csp 27163 normℎcno 27164 Cℋ cch 27170 ⊥cort 27171 ∨ℋ chj 27174 CHStateschst 27204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-hilex 27240 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-map 7746 df-sh 27448 df-ch 27462 df-hst 28455 |
This theorem is referenced by: hstnmoc 28466 hst1h 28470 |
Copyright terms: Public domain | W3C validator |