Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapfval Structured version   Visualization version   GIF version

Theorem hgmapfval 36196
Description: Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.)
Hypotheses
Ref Expression
hgmapval.h 𝐻 = (LHyp‘𝐾)
hgmapfval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hgmapfval.v 𝑉 = (Base‘𝑈)
hgmapfval.t · = ( ·𝑠𝑈)
hgmapfval.r 𝑅 = (Scalar‘𝑈)
hgmapfval.b 𝐵 = (Base‘𝑅)
hgmapfval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hgmapfval.s = ( ·𝑠𝐶)
hgmapfval.m 𝑀 = ((HDMap‘𝐾)‘𝑊)
hgmapfval.i 𝐼 = ((HGMap‘𝐾)‘𝑊)
hgmapfval.k (𝜑 → (𝐾𝑌𝑊𝐻))
Assertion
Ref Expression
hgmapfval (𝜑𝐼 = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
Distinct variable groups:   𝑥,𝑣,𝑦,𝐾   𝑣,𝐵,𝑥,𝑦   𝑣,𝑀,𝑥,𝑦   𝑣,𝑈,𝑥,𝑦   𝑣,𝑉   𝑣,𝑊,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣)   𝐶(𝑥,𝑦,𝑣)   𝑅(𝑥,𝑦,𝑣)   (𝑥,𝑦,𝑣)   · (𝑥,𝑦,𝑣)   𝐻(𝑥,𝑦,𝑣)   𝐼(𝑥,𝑦,𝑣)   𝑉(𝑥,𝑦)   𝑌(𝑥,𝑦,𝑣)

Proof of Theorem hgmapfval
Dummy variables 𝑤 𝑎 𝑏 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hgmapfval.k . 2 (𝜑 → (𝐾𝑌𝑊𝐻))
2 hgmapfval.i . . . 4 𝐼 = ((HGMap‘𝐾)‘𝑊)
3 hgmapval.h . . . . . 6 𝐻 = (LHyp‘𝐾)
43hgmapffval 36195 . . . . 5 (𝐾𝑌 → (HGMap‘𝐾) = (𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))}))
54fveq1d 6105 . . . 4 (𝐾𝑌 → ((HGMap‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))})‘𝑊))
62, 5syl5eq 2656 . . 3 (𝐾𝑌𝐼 = ((𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))})‘𝑊))
7 fveq2 6103 . . . . . . . 8 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
8 hgmapfval.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
97, 8syl6eqr 2662 . . . . . . 7 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈)
10 fveq2 6103 . . . . . . . . . 10 (𝑤 = 𝑊 → ((HDMap‘𝐾)‘𝑤) = ((HDMap‘𝐾)‘𝑊))
11 hgmapfval.m . . . . . . . . . 10 𝑀 = ((HDMap‘𝐾)‘𝑊)
1210, 11syl6eqr 2662 . . . . . . . . 9 (𝑤 = 𝑊 → ((HDMap‘𝐾)‘𝑤) = 𝑀)
13 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → ((LCDual‘𝐾)‘𝑤) = ((LCDual‘𝐾)‘𝑊))
1413fveq2d 6107 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → ( ·𝑠 ‘((LCDual‘𝐾)‘𝑤)) = ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)))
1514oveqd 6566 . . . . . . . . . . . . . 14 (𝑤 = 𝑊 → (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))
1615eqeq2d 2620 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → ((𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)) ↔ (𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))
1716ralbidv 2969 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)) ↔ ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))
1817riotabidv 6513 . . . . . . . . . . 11 (𝑤 = 𝑊 → (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))) = (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))
1918mpteq2dv 4673 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) = (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))))
2019eleq2d 2673 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))))
2112, 20sbceqbid 3409 . . . . . . . 8 (𝑤 = 𝑊 → ([((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ [𝑀 / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))))
2221sbcbidv 3457 . . . . . . 7 (𝑤 = 𝑊 → ([(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ [(Base‘(Scalar‘𝑢)) / 𝑏][𝑀 / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))))
239, 22sbceqbid 3409 . . . . . 6 (𝑤 = 𝑊 → ([((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ [𝑈 / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][𝑀 / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))))
24 fvex 6113 . . . . . . . 8 ((DVecH‘𝐾)‘𝑊) ∈ V
258, 24eqeltri 2684 . . . . . . 7 𝑈 ∈ V
26 fvex 6113 . . . . . . 7 (Base‘(Scalar‘𝑢)) ∈ V
27 fvex 6113 . . . . . . . 8 ((HDMap‘𝐾)‘𝑊) ∈ V
2811, 27eqeltri 2684 . . . . . . 7 𝑀 ∈ V
29 simp2 1055 . . . . . . . . . 10 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → 𝑏 = (Base‘(Scalar‘𝑢)))
30 simp1 1054 . . . . . . . . . . . . 13 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → 𝑢 = 𝑈)
3130fveq2d 6107 . . . . . . . . . . . 12 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → (Scalar‘𝑢) = (Scalar‘𝑈))
32 hgmapfval.r . . . . . . . . . . . 12 𝑅 = (Scalar‘𝑈)
3331, 32syl6eqr 2662 . . . . . . . . . . 11 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → (Scalar‘𝑢) = 𝑅)
3433fveq2d 6107 . . . . . . . . . 10 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → (Base‘(Scalar‘𝑢)) = (Base‘𝑅))
3529, 34eqtrd 2644 . . . . . . . . 9 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → 𝑏 = (Base‘𝑅))
36 hgmapfval.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
3735, 36syl6eqr 2662 . . . . . . . 8 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → 𝑏 = 𝐵)
38 simp2 1055 . . . . . . . . . 10 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → 𝑏 = 𝐵)
39 simp1 1054 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → 𝑢 = 𝑈)
4039fveq2d 6107 . . . . . . . . . . . . 13 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (Base‘𝑢) = (Base‘𝑈))
41 hgmapfval.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑈)
4240, 41syl6eqr 2662 . . . . . . . . . . . 12 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (Base‘𝑢) = 𝑉)
43 simp3 1056 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → 𝑚 = 𝑀)
4439fveq2d 6107 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ( ·𝑠𝑢) = ( ·𝑠𝑈))
45 hgmapfval.t . . . . . . . . . . . . . . . 16 · = ( ·𝑠𝑈)
4644, 45syl6eqr 2662 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ( ·𝑠𝑢) = · )
4746oveqd 6566 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑥( ·𝑠𝑢)𝑣) = (𝑥 · 𝑣))
4843, 47fveq12d 6109 . . . . . . . . . . . . 13 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑀‘(𝑥 · 𝑣)))
49 eqidd 2611 . . . . . . . . . . . . . . . . 17 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊))
50 hgmapfval.c . . . . . . . . . . . . . . . . 17 𝐶 = ((LCDual‘𝐾)‘𝑊)
5149, 50syl6eqr 2662 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ((LCDual‘𝐾)‘𝑊) = 𝐶)
5251fveq2d 6107 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠𝐶))
53 hgmapfval.s . . . . . . . . . . . . . . 15 = ( ·𝑠𝐶)
5452, 53syl6eqr 2662 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = )
55 eqidd 2611 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → 𝑦 = 𝑦)
5643fveq1d 6105 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑚𝑣) = (𝑀𝑣))
5754, 55, 56oveq123d 6570 . . . . . . . . . . . . 13 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)) = (𝑦 (𝑀𝑣)))
5848, 57eqeq12d 2625 . . . . . . . . . . . 12 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ((𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)) ↔ (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))
5942, 58raleqbidv 3129 . . . . . . . . . . 11 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)) ↔ ∀𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))
6038, 59riotaeqbidv 6514 . . . . . . . . . 10 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))
6138, 60mpteq12dv 4663 . . . . . . . . 9 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))) = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
6261eleq2d 2673 . . . . . . . 8 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))))
6337, 62syld3an2 1365 . . . . . . 7 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → (𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))))
6425, 26, 28, 63sbc3ie 3474 . . . . . 6 ([𝑈 / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][𝑀 / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
6523, 64syl6bb 275 . . . . 5 (𝑤 = 𝑊 → ([((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))))
6665abbi1dv 2730 . . . 4 (𝑤 = 𝑊 → {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))} = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
67 eqid 2610 . . . 4 (𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))}) = (𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))})
68 fvex 6113 . . . . . 6 (Base‘𝑅) ∈ V
6936, 68eqeltri 2684 . . . . 5 𝐵 ∈ V
7069mptex 6390 . . . 4 (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))) ∈ V
7166, 67, 70fvmpt 6191 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))})‘𝑊) = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
726, 71sylan9eq 2664 . 2 ((𝐾𝑌𝑊𝐻) → 𝐼 = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
731, 72syl 17 1 (𝜑𝐼 = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {cab 2596  wral 2896  Vcvv 3173  [wsbc 3402  cmpt 4643  cfv 5804  crio 6510  (class class class)co 6549  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  LHypclh 34288  DVecHcdvh 35385  LCDualclcd 35893  HDMapchdma 36100  HGMapchg 36193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-hgmap 36194
This theorem is referenced by:  hgmapval  36197  hgmapfnN  36198
  Copyright terms: Public domain W3C validator