Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heeq1 Structured version   Visualization version   GIF version

Theorem heeq1 37091
Description: Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.)
Assertion
Ref Expression
heeq1 (𝑅 = 𝑆 → (𝑅 hereditary 𝐴𝑆 hereditary 𝐴))

Proof of Theorem heeq1
StepHypRef Expression
1 eqid 2610 . 2 𝐴 = 𝐴
2 heeq12 37090 . 2 ((𝑅 = 𝑆𝐴 = 𝐴) → (𝑅 hereditary 𝐴𝑆 hereditary 𝐴))
31, 2mpan2 703 1 (𝑅 = 𝑆 → (𝑅 hereditary 𝐴𝑆 hereditary 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475   hereditary whe 37086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-he 37087
This theorem is referenced by:  0heALT  37097
  Copyright terms: Public domain W3C validator