MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruurn Structured version   Visualization version   GIF version

Theorem gruurn 9499
Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun 9500 for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruurn ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → ran 𝐹𝑈)

Proof of Theorem gruurn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapg 7757 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐹 ∈ (𝑈𝑚 𝐴) ↔ 𝐹:𝐴𝑈))
2 elgrug 9493 . . . . . . 7 (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈))))
32ibi 255 . . . . . 6 (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈)))
43simprd 478 . . . . 5 (𝑈 ∈ Univ → ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈))
5 rneq 5272 . . . . . . . . . 10 (𝑦 = 𝐹 → ran 𝑦 = ran 𝐹)
65unieqd 4382 . . . . . . . . 9 (𝑦 = 𝐹 ran 𝑦 = ran 𝐹)
76eleq1d 2672 . . . . . . . 8 (𝑦 = 𝐹 → ( ran 𝑦𝑈 ran 𝐹𝑈))
87rspccv 3279 . . . . . . 7 (∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈 → (𝐹 ∈ (𝑈𝑚 𝑥) → ran 𝐹𝑈))
983ad2ant3 1077 . . . . . 6 ((𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈) → (𝐹 ∈ (𝑈𝑚 𝑥) → ran 𝐹𝑈))
109ralimi 2936 . . . . 5 (∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈) → ∀𝑥𝑈 (𝐹 ∈ (𝑈𝑚 𝑥) → ran 𝐹𝑈))
11 oveq2 6557 . . . . . . . 8 (𝑥 = 𝐴 → (𝑈𝑚 𝑥) = (𝑈𝑚 𝐴))
1211eleq2d 2673 . . . . . . 7 (𝑥 = 𝐴 → (𝐹 ∈ (𝑈𝑚 𝑥) ↔ 𝐹 ∈ (𝑈𝑚 𝐴)))
1312imbi1d 330 . . . . . 6 (𝑥 = 𝐴 → ((𝐹 ∈ (𝑈𝑚 𝑥) → ran 𝐹𝑈) ↔ (𝐹 ∈ (𝑈𝑚 𝐴) → ran 𝐹𝑈)))
1413rspccv 3279 . . . . 5 (∀𝑥𝑈 (𝐹 ∈ (𝑈𝑚 𝑥) → ran 𝐹𝑈) → (𝐴𝑈 → (𝐹 ∈ (𝑈𝑚 𝐴) → ran 𝐹𝑈)))
154, 10, 143syl 18 . . . 4 (𝑈 ∈ Univ → (𝐴𝑈 → (𝐹 ∈ (𝑈𝑚 𝐴) → ran 𝐹𝑈)))
1615imp 444 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐹 ∈ (𝑈𝑚 𝐴) → ran 𝐹𝑈))
171, 16sylbird 249 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐹:𝐴𝑈 ran 𝐹𝑈))
18173impia 1253 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → ran 𝐹𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  𝒫 cpw 4108  {cpr 4127   cuni 4372  Tr wtr 4680  ran crn 5039  wf 5800  (class class class)co 6549  𝑚 cmap 7744  Univcgru 9491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-gru 9492
This theorem is referenced by:  gruiun  9500  grurn  9502  intgru  9515
  Copyright terms: Public domain W3C validator