MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grupr Structured version   Visualization version   GIF version

Theorem grupr 9498
Description: A Grothendieck universe contains pairs derived from its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
grupr ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} ∈ 𝑈)

Proof of Theorem grupr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elgrug 9493 . . . . . . 7 (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈))))
21ibi 255 . . . . . 6 (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈)))
32simprd 478 . . . . 5 (𝑈 ∈ Univ → ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈))
4 preq2 4213 . . . . . . . . . 10 (𝑦 = 𝐵 → {𝑥, 𝑦} = {𝑥, 𝐵})
54eleq1d 2672 . . . . . . . . 9 (𝑦 = 𝐵 → ({𝑥, 𝑦} ∈ 𝑈 ↔ {𝑥, 𝐵} ∈ 𝑈))
65rspccv 3279 . . . . . . . 8 (∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 → (𝐵𝑈 → {𝑥, 𝐵} ∈ 𝑈))
763ad2ant2 1076 . . . . . . 7 ((𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈) → (𝐵𝑈 → {𝑥, 𝐵} ∈ 𝑈))
87com12 32 . . . . . 6 (𝐵𝑈 → ((𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈) → {𝑥, 𝐵} ∈ 𝑈))
98ralimdv 2946 . . . . 5 (𝐵𝑈 → (∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈) → ∀𝑥𝑈 {𝑥, 𝐵} ∈ 𝑈))
103, 9syl5com 31 . . . 4 (𝑈 ∈ Univ → (𝐵𝑈 → ∀𝑥𝑈 {𝑥, 𝐵} ∈ 𝑈))
11 preq1 4212 . . . . . 6 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
1211eleq1d 2672 . . . . 5 (𝑥 = 𝐴 → ({𝑥, 𝐵} ∈ 𝑈 ↔ {𝐴, 𝐵} ∈ 𝑈))
1312rspccv 3279 . . . 4 (∀𝑥𝑈 {𝑥, 𝐵} ∈ 𝑈 → (𝐴𝑈 → {𝐴, 𝐵} ∈ 𝑈))
1410, 13syl6 34 . . 3 (𝑈 ∈ Univ → (𝐵𝑈 → (𝐴𝑈 → {𝐴, 𝐵} ∈ 𝑈)))
1514com23 84 . 2 (𝑈 ∈ Univ → (𝐴𝑈 → (𝐵𝑈 → {𝐴, 𝐵} ∈ 𝑈)))
16153imp 1249 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  𝒫 cpw 4108  {cpr 4127   cuni 4372  Tr wtr 4680  ran crn 5039  (class class class)co 6549  𝑚 cmap 7744  Univcgru 9491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-tr 4681  df-iota 5768  df-fv 5812  df-ov 6552  df-gru 9492
This theorem is referenced by:  grusn  9505  gruop  9506  gruun  9507  gruwun  9514  intgru  9515
  Copyright terms: Public domain W3C validator