MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsgrp Structured version   Visualization version   GIF version

Theorem grpsgrp 17269
Description: A group is a semigroup. (Contributed by AV, 28-Aug-2021.)
Assertion
Ref Expression
grpsgrp (𝐺 ∈ Grp → 𝐺 ∈ SGrp)

Proof of Theorem grpsgrp
StepHypRef Expression
1 grpmnd 17252 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 mndsgrp 17122 . 2 (𝐺 ∈ Mnd → 𝐺 ∈ SGrp)
31, 2syl 17 1 (𝐺 ∈ Grp → 𝐺 ∈ SGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1977  SGrpcsgrp 17106  Mndcmnd 17117  Grpcgrp 17245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-mnd 17118  df-grp 17248
This theorem is referenced by:  dfgrp2  17270  dfgrp3  17337  isarchi3  29072
  Copyright terms: Public domain W3C validator