MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidinv Structured version   Visualization version   GIF version

Theorem grpidinv 17298
Description: A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (Revised by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grpidinv.b 𝐵 = (Base‘𝐺)
grpidinv.p + = (+g𝐺)
Assertion
Ref Expression
grpidinv (𝐺 ∈ Grp → ∃𝑢𝐵𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)))
Distinct variable groups:   𝑢,𝐺,𝑥,𝑦   𝑢,𝐵,𝑦   𝑢, + ,𝑦
Allowed substitution hints:   𝐵(𝑥)   + (𝑥)

Proof of Theorem grpidinv
StepHypRef Expression
1 grpidinv.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2610 . . 3 (0g𝐺) = (0g𝐺)
31, 2grpidcl 17273 . 2 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
4 oveq1 6556 . . . . . . 7 (𝑢 = (0g𝐺) → (𝑢 + 𝑥) = ((0g𝐺) + 𝑥))
54eqeq1d 2612 . . . . . 6 (𝑢 = (0g𝐺) → ((𝑢 + 𝑥) = 𝑥 ↔ ((0g𝐺) + 𝑥) = 𝑥))
6 oveq2 6557 . . . . . . 7 (𝑢 = (0g𝐺) → (𝑥 + 𝑢) = (𝑥 + (0g𝐺)))
76eqeq1d 2612 . . . . . 6 (𝑢 = (0g𝐺) → ((𝑥 + 𝑢) = 𝑥 ↔ (𝑥 + (0g𝐺)) = 𝑥))
85, 7anbi12d 743 . . . . 5 (𝑢 = (0g𝐺) → (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ (((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥)))
9 eqeq2 2621 . . . . . . 7 (𝑢 = (0g𝐺) → ((𝑦 + 𝑥) = 𝑢 ↔ (𝑦 + 𝑥) = (0g𝐺)))
10 eqeq2 2621 . . . . . . 7 (𝑢 = (0g𝐺) → ((𝑥 + 𝑦) = 𝑢 ↔ (𝑥 + 𝑦) = (0g𝐺)))
119, 10anbi12d 743 . . . . . 6 (𝑢 = (0g𝐺) → (((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢) ↔ ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
1211rexbidv 3034 . . . . 5 (𝑢 = (0g𝐺) → (∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢) ↔ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
138, 12anbi12d 743 . . . 4 (𝑢 = (0g𝐺) → ((((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺)))))
1413ralbidv 2969 . . 3 (𝑢 = (0g𝐺) → (∀𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ∀𝑥𝐵 ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺)))))
1514adantl 481 . 2 ((𝐺 ∈ Grp ∧ 𝑢 = (0g𝐺)) → (∀𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ∀𝑥𝐵 ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺)))))
16 grpidinv.p . . . 4 + = (+g𝐺)
171, 16, 2grpidinv2 17297 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
1817ralrimiva 2949 . 2 (𝐺 ∈ Grp → ∀𝑥𝐵 ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
193, 15, 18rspcedvd 3289 1 (𝐺 ∈ Grp → ∃𝑢𝐵𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Grpcgrp 17245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator